Featured Research

from universities, journals, and other organizations

Gene Knockout Prolongs Ovarian Lifespan In Mice

Date:
February 2, 1999
Source:
Massachusetts General Hospital
Summary:
A research team based at the Massachusetts General Hospital (MGH) has found that inactivation of a single gene in female mice can sustain ovarian function into advanced age. The report in the February issue of Nature Genetics describes how female mice in which a gene called Bax is inactivated do not experience the normal loss of ovarian cells that occurs throughout the animal' lifetime.

A research team based at the Massachusetts General Hospital (MGH) has found that inactivation of a single gene in female mice can sustain ovarian function into advanced age. The report in the February issue of Nature Genetics describes how female mice in which a gene called Bax is inactivated do not experience the normal loss of ovarian cells that occurs throughout the animal' lifetime.

While these aged mice maintain a functioning supply of both oocytes (egg cells) and hormone-secreting granulosa cells, they do not ovulate or become pregnant under normal conditions. The research, which still is far from application in humans, may eventually lead to new techniques for delaying menopause and reducing its associated health risks.

"The Bax-deficient mice retained hundreds of ovarian follicles [tiny sacs containing an oocyte surrounded by granulosa cells] at an age when the ovaries are usually barren," says Jonathan Tilly, PhD, director of the MGH Vincent Center for Reproductive Biology and the paper's senior author. "And we were very pleased to find that the aged Bax-deficient mice appear to develop relatively normally in every other way."

Bax is one of a group of genes known to be key to programmed cell death -- the natural process by which unneeded cells are eliminated from the body. Previous research by the MGH-based team had shown that Bax expression was correlated with ovarian cell death in mice and humans. (Mammalian females are born with a set number of oocytes, more than 90 percent of which die off throughout the animal's lifetime.) Bax was first cloned by Stanley Korsmeyer, MD, a member of the research team who also produced the Bax-knockout mice. Korsmeyer was with the Howard Hughes Medical Institute at Washington University School of Medicine in St. Louis while this study was conducted and is now at the Dana-Farber Cancer Institute in Boston.

Pursuing the suggestion that inactivation of Bax could preserve ovarian cells, the research team compared Bax-deficient female mice with normal mice of the same ages. They found that, although both groups of mice have identical numbers of ovarian cells at birth, by puberty or shortly thereafter Bax-deficient females have three times as many immature egg-containing follicles as do the normal mice. Among mice reaching the very advanced age of 20 to 22 months, normal mice have exhausted their supply of both oocytes and granulosa cells, while the Bax-deficient mice maintain hundreds of follicles with functioning cells of both types.

Despite their healthy supply of ovarian cells, however, the aged Bax-deficient female mice do not ovulate and do not become pregnant when housed with young male mice. The researchers believe that a decline in regulatory hormone signals from the brain, among other normal, age-related bodily changes, causes the Bax-deficient females to become incapable of reproduction as they age.

"Prolonging general ovarian function -- separate from maintaining fertility -- holds great potential for benefiting women's health," Tilly says. "The cutoff in estrogen production that occurs with menopause increases women's risks of osteoporosis and heart disease and may be associated with other conditions like dementia. Although many women choose estrogen replacement therapy to reduce these risks, finding ways to prolong the body's natural estrogen production offers an exciting alternative."

Tilly stresses that no technology currently exists to apply this research in humans. Although the Bax-deficient mice showed no adverse health effects from the gene knockout, including no cancers, human application would require selectively blocking the gene's expression in the ovary alone, something that currently is impossible.

The study was led by Gloria Perez, DVM, PhD, and Rodolfo Robles, MD, both of the MGH Vincent Center for Reproductive Biology. In addition to Tilly and Korsmeyer, the study's other co-authors are Michael Knudson, MD, PhD, of the Howard Hughes Medical Institute at Washington University School of Medicine in St. Louis, and Jodi Flaws, PhD, of the MGH and the University of Maryland School of Medicine. The study was supported by grants from the National Institutes of Health and Vincent Memorial Research Funds.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "Gene Knockout Prolongs Ovarian Lifespan In Mice." ScienceDaily. ScienceDaily, 2 February 1999. <www.sciencedaily.com/releases/1999/02/990202072624.htm>.
Massachusetts General Hospital. (1999, February 2). Gene Knockout Prolongs Ovarian Lifespan In Mice. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/1999/02/990202072624.htm
Massachusetts General Hospital. "Gene Knockout Prolongs Ovarian Lifespan In Mice." ScienceDaily. www.sciencedaily.com/releases/1999/02/990202072624.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins