Featured Research

from universities, journals, and other organizations

NYU Neuroscientist Explores Changes In The Brain Following Hearing Loss

Date:
February 4, 1999
Source:
New York University
Summary:
In the United States alone, 28 million people have some degree of hearing impairment. The problem is particularly severe in childhood, when deafness can have a profound impact on intellectual and emotional development. NYU neuroscientist Dan H. Sanes works to understand how deafness affects the growth and function of the central nervous system, and how these effects might be averted or reversed.

In the United States alone, 28 million people have some degree of hearing impairment. The problem is particularly severe in childhood, when deafness can have a profound impact on intellectual and emotional development. NYU neuroscientist Dan H. Sanes works to understand how deafness affects the growth and function of the central nervous system, and how these effects might be averted or reversed.

Sanes' research focuses on the development of inhibitory synapses. Although much is known about how malfunction of the excitatory synapses affects the auditory system's development, there is a dearth of such information on the inhibitory synapses.

Sanes is trying to fill this void. Previously, he has demonstrated that a developing organism's central auditory system can undergo striking changes when the inhibitory synapses malfunction for as little as 24 hours. For example, nerve cell dendrites produce extra branches, and excitatory connections from the intact ear become stronger than normal.

Sanes said, "We're trying to figure out what happens to the connections between nerve cells when they're deprived of stimulation during development, as occurs in hearing loss. Changes in the strength of inhibitory synapses can fundamentally alter how the central nervous system processes speech sounds or the location of a moving car. Broken inhibitory synapses probably play a pivotal role in many developmental disorders, including dyslexia and epilepsy."

Sanes lab is now examining how the activity of inhibitory synapses might influence neural development, and why the loss of this activity is so harmful. Dr. Vibhakar Kotak, a collaborator in Sanes's lab, discovered that the inhibitory synapses release a unique neurotransmitter during early development. This neonatal signal (an amino acid called GABA) activates a specific type of receptor, and it can depress the strength of neighboring connections. Understanding the normal signals that help inhibitory synapses form will be crucial to understanding how to deal with their loss or damage.

A second interest in Sanes' lab is the restoration of function following traumatic injury to nervous system pathways. For adult mammals, including humans, a major obstacle is that neuronal processes, called axons, will not regrow across the site of injury. In collaboration with Dr Aziz Hafidi, Sanes' lab has generated a model system to study this phenomenon. Relatively large pieces of the rodent central auditory system are kept alive in an incubator, where axon regeneration can be followed more easily. Although cut axons show some ability to grow, they are unable to cross the injury site, similar to the situation in the living animal. Sanes' lab is currently working on methods to modify the injury site in order to permit axons to grow across it.

Sanes is Director of NYU's Center for Neural Science. His research is supported by National Institute on Deafness and Other Communication Disorders and the National Science Foundation. Sanes teaches in both undergraduate and graduate programs, and is currently co-authoring an undergraduate textbook entitled Development of the Nervous System.

###

The Center for Neural Science is the focus for teaching and research in the brain sciences at the Washington Square Campus of New York University. Formed in 1987, the Center is a department of the Faculty of Arts and Science. The research interests of its faculty span a broad range of topics in neural science, and utilize techniques ranging from cellular analyses to fully integrated systems, computational, and cognitive studies.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU Neuroscientist Explores Changes In The Brain Following Hearing Loss." ScienceDaily. ScienceDaily, 4 February 1999. <www.sciencedaily.com/releases/1999/02/990204081932.htm>.
New York University. (1999, February 4). NYU Neuroscientist Explores Changes In The Brain Following Hearing Loss. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1999/02/990204081932.htm
New York University. "NYU Neuroscientist Explores Changes In The Brain Following Hearing Loss." ScienceDaily. www.sciencedaily.com/releases/1999/02/990204081932.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins