Featured Research

from universities, journals, and other organizations

NYU Neuroscientist Explores Changes In The Brain Following Hearing Loss

Date:
February 4, 1999
Source:
New York University
Summary:
In the United States alone, 28 million people have some degree of hearing impairment. The problem is particularly severe in childhood, when deafness can have a profound impact on intellectual and emotional development. NYU neuroscientist Dan H. Sanes works to understand how deafness affects the growth and function of the central nervous system, and how these effects might be averted or reversed.

In the United States alone, 28 million people have some degree of hearing impairment. The problem is particularly severe in childhood, when deafness can have a profound impact on intellectual and emotional development. NYU neuroscientist Dan H. Sanes works to understand how deafness affects the growth and function of the central nervous system, and how these effects might be averted or reversed.

Sanes' research focuses on the development of inhibitory synapses. Although much is known about how malfunction of the excitatory synapses affects the auditory system's development, there is a dearth of such information on the inhibitory synapses.

Sanes is trying to fill this void. Previously, he has demonstrated that a developing organism's central auditory system can undergo striking changes when the inhibitory synapses malfunction for as little as 24 hours. For example, nerve cell dendrites produce extra branches, and excitatory connections from the intact ear become stronger than normal.

Sanes said, "We're trying to figure out what happens to the connections between nerve cells when they're deprived of stimulation during development, as occurs in hearing loss. Changes in the strength of inhibitory synapses can fundamentally alter how the central nervous system processes speech sounds or the location of a moving car. Broken inhibitory synapses probably play a pivotal role in many developmental disorders, including dyslexia and epilepsy."

Sanes lab is now examining how the activity of inhibitory synapses might influence neural development, and why the loss of this activity is so harmful. Dr. Vibhakar Kotak, a collaborator in Sanes's lab, discovered that the inhibitory synapses release a unique neurotransmitter during early development. This neonatal signal (an amino acid called GABA) activates a specific type of receptor, and it can depress the strength of neighboring connections. Understanding the normal signals that help inhibitory synapses form will be crucial to understanding how to deal with their loss or damage.

A second interest in Sanes' lab is the restoration of function following traumatic injury to nervous system pathways. For adult mammals, including humans, a major obstacle is that neuronal processes, called axons, will not regrow across the site of injury. In collaboration with Dr Aziz Hafidi, Sanes' lab has generated a model system to study this phenomenon. Relatively large pieces of the rodent central auditory system are kept alive in an incubator, where axon regeneration can be followed more easily. Although cut axons show some ability to grow, they are unable to cross the injury site, similar to the situation in the living animal. Sanes' lab is currently working on methods to modify the injury site in order to permit axons to grow across it.

Sanes is Director of NYU's Center for Neural Science. His research is supported by National Institute on Deafness and Other Communication Disorders and the National Science Foundation. Sanes teaches in both undergraduate and graduate programs, and is currently co-authoring an undergraduate textbook entitled Development of the Nervous System.

###

The Center for Neural Science is the focus for teaching and research in the brain sciences at the Washington Square Campus of New York University. Formed in 1987, the Center is a department of the Faculty of Arts and Science. The research interests of its faculty span a broad range of topics in neural science, and utilize techniques ranging from cellular analyses to fully integrated systems, computational, and cognitive studies.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU Neuroscientist Explores Changes In The Brain Following Hearing Loss." ScienceDaily. ScienceDaily, 4 February 1999. <www.sciencedaily.com/releases/1999/02/990204081932.htm>.
New York University. (1999, February 4). NYU Neuroscientist Explores Changes In The Brain Following Hearing Loss. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/1999/02/990204081932.htm
New York University. "NYU Neuroscientist Explores Changes In The Brain Following Hearing Loss." ScienceDaily. www.sciencedaily.com/releases/1999/02/990204081932.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins