Featured Research

from universities, journals, and other organizations

UD Valentine Science: Cell "Dating" Habits May Promise Healthier Hearts

Date:
February 10, 1999
Source:
University Of Delaware
Summary:
Q--What did one blood platelet say to the other? A--Want to stick around awhile? In fact, a "matchmaker" protein may help pair sticky fibrinogen with hook-like receptors on blood platelets, thereby setting the stage for clots, which can trigger heart attacks, strokes and arterial inflammation, a University of Delaware scientist explains.

Q--What did one blood platelet say to the other?

Related Articles


A--Want to stick around awhile?

In fact, a "matchmaker" protein may help pair sticky fibrinogen with hook-like receptors on blood platelets, thereby setting the stage for clots, which can trigger heart attacks, strokes and arterial inflammation, a University of Delaware scientist explains.

Studies of the matchmaker protein--dubbed CIB for its calcium and integrin binding function--may someday suggest new strategies for preventing sudden deaths caused by heart attacks, says Ulhas P. Naik, an assistant professor of biological sciences at UD. The research remains fundamental for now, he cautions, but it should prove useful to drug companies in the future.

"If we can learn exactly what lures these cells together, it might be possible to develop better remedies for blocking platelet aggregation, or clustering," Naik says. "The dating rituals of these cells also may shed light on how cells migrate from place to place, and how white blood cells--the body's police officers--reach the site of an infection."

In 1996, Naik's identification of the CIB protein earned him the American Heart Association's Young Investigator Prize in Thrombosis, awarded every two years to a single researcher whose work is judged best in the world.

Since then, his investigations have focused on yet another player in the courtship of clot-related cells. His latest discovery, nicknamed PAM-1 (for platelet adhesive molecule), seems to prowl the corridors of the bloodstream, arranging dates for various cell pairs.

CIB, on the other hand, is an inside operator, similar to known "regulatory" proteins, which works within platelets to attract the protein fibers that form a framework for blood clots.

When a blood vessel is injured, biochemical catalysts (agonists) such as thrombin send signals into platelets, changing the shape of a receptor or "integrin" protruding from the cell's surface. A sticky, fibrous protein in the bloodstream, fibrinogen takes the hint, latching onto the available integrin (glycoproteinIIb/IIIa), and causing the formation of platelet aggregates, according to Naik, whose work is funded by the National Heart, Lung and Blood Institute of the National Institutes of Health (NIH).

Creating the mood for a matchNaik isolated the matchmaker protein from a vast pool of potential protein partners by adding "bait"--specifically, the integrin's tail.

Inside a yeast cell, each solo protein searched for a suitable partner. Naik knew he had a match when the process of gene expression was triggered as a result of a protein-protein interaction.

In this way, Naik can screen a million cloned proteins for naturally forming couples--a widely used technique, which he described in the Journal of Biological Chemistry (Feb. 21, 1997, vol. 272, no. 8, pp. 4651-5654). "When one or two yeast colonies change colors," he explains, "I know that they are interacting." A series of subsequent experiments can then pinpoint the true interaction.

A super cell glue?Most recently, Naik isolated an adhesive molecule that seems to work like glue, prompting different cells, including platelets, to stick together. Falling within the large family of cellular adhesive molecules (CAMs), PAM-1 seems to travel in pairs.

"Two PAM-1 molecules on two different proteins will interact with each other," Naik says. "This is called a homophilic interaction. I have found blobs of these PAM-1 molecules where two cells are attached."

The glue-like molecules are expressed by heart, endothelial, lung, kidney, pancreas and other cells, according to Naik. They seem to function as receptors on the surface of platelet cells, he adds.

"Clots begin with platelet activation," he notes. "If we could slow or stop that process, we could develop additional tools for combating a wide range of heart diseases."

PAM-1's precise activities remain a mystery, Naik emphasizes, but he plans continued studies, in collaboration with colleagues including Patricia A. DeLeon, a UD professor of human genetics, who has been investigating another adhesive molecule involved in reproduction. DeLeon's goal is to localize the gene that expresses PAM-1 within the human genome and in the mouse, an excellent model organ system.

"Once we find where the gene resides," DeLeon says, "then we can begin to ask whether any disease that might be expected for an alteration of the gene is linked to the same region. Most of these adhesive proteins are multi-functional, so I think we'll find that PAM-1 may play a number of roles. By mapping the gene in both the human and mouse, we will increase our chances of identifying its possible role in diseases."

Studies of integrins and cell adhesive molecules could promote a better understanding of a variety of ailments, from thrombosis and inflammation to heart attacks and cancer, as well as physiological processes such as reproduction. Naik's work "is contributing to our fundamental understanding of how individual cells in complex tissues communicate," says Daniel D. Carson, chairperson of UD's Department of Biological Sciences. "His studies have important implications for embryonic development as well as disease progression."

###

Journal article online: http://www.jbc.org/ (search for vol. 272.)


Story Source:

The above story is based on materials provided by University Of Delaware. Note: Materials may be edited for content and length.


Cite This Page:

University Of Delaware. "UD Valentine Science: Cell "Dating" Habits May Promise Healthier Hearts." ScienceDaily. ScienceDaily, 10 February 1999. <www.sciencedaily.com/releases/1999/02/990210065649.htm>.
University Of Delaware. (1999, February 10). UD Valentine Science: Cell "Dating" Habits May Promise Healthier Hearts. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/1999/02/990210065649.htm
University Of Delaware. "UD Valentine Science: Cell "Dating" Habits May Promise Healthier Hearts." ScienceDaily. www.sciencedaily.com/releases/1999/02/990210065649.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins