Featured Research

from universities, journals, and other organizations

UCSF Researchers Identify Key Genes In Bone Healing Process That Could Lead To New, Molecular-Based Treatments

Date:
February 10, 1999
Source:
University Of California, San Francisco
Summary:
Researchers from the University of California San Francisco studying bone healing in animal models have found that two genes essential for bone formation in the fetus are also key to successful fracture repair in the adult. Through a clever biologic regulatory process, the two genes become inactive when fetal development concludes but then resurface when needed to help mend broken bones.

Anaheim, Calif. -- Researchers from the University of California San Francisco studying bone healing in animal models have found that two genes essential for bone formation in the fetus are also key to successful fracture repair in the adult.

Through a clever biologic regulatory process, the two genes become inactive when fetal development concludes but then resurface when needed to help mend broken bones.

"These findings shed new light on the bone formation process at the molecular level. Now we can use these principles to begin to develop new clinical treatments for troublesome fractures in which we mimic the natural healing process," said Theodore Miclau, MD, lead investigator and UCSF assistant professor of orthopaedic surgery who treats patients at San Francisco General Hospital Medical Center.

Miclau presented the study findings here today (February 5) at the annual meeting of the American Academy of Orthopaedic Surgeons. Working with adult mice, the UCSF team focused on the expression patterns of two embryonic genes, cbfal and Indian hedgehog, which are known to be indispensable in fetal bone formation.

Study results showed the genes reappeared in the bone of a mature animal when it underwent a fracture. During this process of "reinduction," the genes activated the expression of two proteins that contributed to bone healing in the adult model in a sequence very similar to the pattern that takes place during skeletal formation in the fetus.

The researchers analyzed bone tissue at the fracture site in adult mice at 3, 6, 8, 10, and 14 days after fracture to assess the presence of growth factors and other proteins. The UCSF team is believed to be the first to report the expression of the two genes in an animal bone repair model.

"Understanding this cascade of events and the specific growth factors involved in bone repair is a small step but a significant one. If we can replicate the pattern and target therapy directly to the fracture site through injection, there is potential for greatly improving our ability to treat a bone healing problem," Miclau said.

This type of targeted, molecular-based treatment would be more desirable than a bone graft, which currently is the most common therapy for a problem fracture, according to Miclau. A graft involves taking bone from elsewhere in the body, usually the pelvis, and carries an overall complication rate of about 25 percent. Ten years from now, Miclau foresees targeted therapy replacing the majority of bone graft procedures.

The UCSF study team represents a collaboration of clinicians with basic scientists. Miclau, a surgeon, headed the research project with Jill Helms, DDS, PhD, director of the Molecular and Cellular Biology Laboratory of the UCSF Department of Orthopaedic Surgery. Eytan Alpern, MD, UCSF research fellow in orthopaedic surgery, and Cristin Ferguson, MD, University of Rochester, contributed to the project.

The study was funded by grants from the Orthopaedic Research and Education Foundation and the Orthopaedic Trauma Association.


Story Source:

The above story is based on materials provided by University Of California, San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Francisco. "UCSF Researchers Identify Key Genes In Bone Healing Process That Could Lead To New, Molecular-Based Treatments." ScienceDaily. ScienceDaily, 10 February 1999. <www.sciencedaily.com/releases/1999/02/990210070313.htm>.
University Of California, San Francisco. (1999, February 10). UCSF Researchers Identify Key Genes In Bone Healing Process That Could Lead To New, Molecular-Based Treatments. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/1999/02/990210070313.htm
University Of California, San Francisco. "UCSF Researchers Identify Key Genes In Bone Healing Process That Could Lead To New, Molecular-Based Treatments." ScienceDaily. www.sciencedaily.com/releases/1999/02/990210070313.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins