Featured Research

from universities, journals, and other organizations

Molecular Control Mechanism Of Embryonic Development Unraveled

Date:
February 19, 1999
Source:
National Science Foundation
Summary:
National Science Foundation (NSF)-funded researchers at the Johns Hopkins School of Medicine in Baltimore, Maryland, and at California's Stanford University have shed new light on the molecular switches that control the complex process by which a single fertilized egg develops into a mature organism. Their paper is published in the February 19, 1999, issue of the journal Cell.

National Science Foundation (NSF)-funded researchers at the Johns Hopkins School of Medicine in Baltimore, Maryland, and at California's Stanford University have shed new light on the molecular switches that control the complex process by which a single fertilized egg develops into a mature organism. Their paper is published in the February 19, 1999, issue of the journal Cell.

Related Articles


In humans and other mammals, the process is orchestrated in the developing embryo by a set of proteins called "Hox proteins" that control the timely expression of genes -- and thereby control the production of the "next stage" proteins needed for embryonic development. The action of Hox proteins must, in turn, be coordinated to assure the accurate development of an embryo; that coordination involves another set of proteins that act as molecular choreographers.

"Failure of the molecular systems that control development prevents normal embryonic growth, and alterations in these control systems can lead to a wide variety of cancers," explains Kamal Shukla, program director in NSF's division of cellular and molecular biosciences, which funds the research. "Understanding the molecular mechanisms that control normal embryonic development is the first step in developing strategies to prevent these errors, or to repair them when they have gone wrong." Cynthia Wolberger at Johns Hopkins and Michael Cleary at Stanford have made a major step forward in the understanding of these crucial molecular events, Shukla believes.

This research, which uses x-ray crystallography, has led to the determination of the atomic structure of "HoxB1" and a protein called Pbx1, all bound to a fragment of DNA. Pbx1 plays a central role in the modulation of Hox protein function, and mutations in it have been implicated in some childhood leukemias. By visualizing how Pbx1 interacts with a Hox protein and with DNA, Wolberger and colleagues have determined the precise way in which the proteins interact with one another to control development.

Pbx1, by interacting with Hox proteins, is able to control the expression of many different types of proteins, says Wolberger. "Understanding how they interact with partner proteins such as Pbx1 and with DNA is key to knowledge of the mechanism by which a developing organism grows from a single fertilized egg cell into a fully differentiated creature with head and tail, arms and legs."


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Molecular Control Mechanism Of Embryonic Development Unraveled." ScienceDaily. ScienceDaily, 19 February 1999. <www.sciencedaily.com/releases/1999/02/990219081353.htm>.
National Science Foundation. (1999, February 19). Molecular Control Mechanism Of Embryonic Development Unraveled. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/1999/02/990219081353.htm
National Science Foundation. "Molecular Control Mechanism Of Embryonic Development Unraveled." ScienceDaily. www.sciencedaily.com/releases/1999/02/990219081353.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Americans Drink More in the Winter

Americans Drink More in the Winter

Buzz60 (Dec. 22, 2014) The BACtrack breathalyzer app analyzed Americans' blood alcohol content and found out a whole lot of interesting things about their drinking habits. Mara Montalbano (@maramontalbano) has more. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins