Featured Research

from universities, journals, and other organizations

Engineered Glass Tempering Halts Cracks

Date:
February 26, 1999
Source:
Penn State
Summary:
Few things are as fragile as glass, and if a Penn State researcher has his way, some types of glass will be less fragile.

University Park, Pa. --- Few things are as fragile as glass, and if a Penn State researcher has his way, some types of glass will be less fragile.

"Chemical and heat tempered glasses have been around for a long time," says Dr. David J. Green, professor of ceramic science and engineering. "These glasses can withstand more stress before breaking than untreated glass, but when they break, they usually break catastrophically."

Another problem with chemical and heat tempered glass is that while each individual piece of glass becomes stronger, the variability of strength between pieces of glass increases dramatically. Engineers choosing glass for specific purposes must account for this wider range of strengths.

Working with Dr. R. Tandon of Caterpillar Inc., in Peoria, Illinois, and V.M. Sglavo of the University of Trento, Italy, Green developed a theoretical approach to designing strengthened glass. The team reported their work in today's (Feb. 26) issue of the journal Science.

Conventional tempering of glass alters the outer surface of the glass so that it is under compression. Glass under compression can withstand higher levels of stress before reaching the failure point.

"Rather than simply altering the outside layer of glass, we would like to engineer the glass so that it has a specific compression profile making the final product stronger and less variable," says Green, a faculty member in the College of Earth and Mineral Sciences.

The researchers tested their theory using the chemical tempering process on sodium aluminosilicate glass, but believe that they could adapt the process to other tempering processes and other materials.

In chemical tempering, potassium atoms are often used to replace some of the sodium atoms near the surface. These potassium atoms are slightly larger than the sodium atoms and they compress the layer in which they are substituted by crowding the other atoms. Chemical tempering usually occurs in the outer millimeter of the pane of glass.

"If we place the maximum compression layer beneath the surface, when cracks propagate from the flaws on the surface, they reach the layer and stop," says Green.

The researchers created these internal compressed layers by subjecting the glass to chemical processing where potassium substituted for sodium, but then exchanged some of the potassium near the surface back to sodium. This created glass with an untempered surface, but with a tempered, compressed layer below.

"Unexpectedly, glass made in this way exhibits multiple cracking," says Green. "Unlike untreated glass or conventionally tempered glass where a crack that begins progresses rapidly to catastrophic failure, small cracks begin to form in the untempered layer and then the cracks are arrested by the compressed layer."

Many cracks may form before the ultimate crack that propagates through the compressed layer and shatters the glass. This surface crazing can be used as a warning that the glass is approaching its breaking point and needs to be replaced. Creating glass that will only break at a certain, predetermined stress level may also be possible.

"The strength range of a batch of conventionally tempered glass may be as broad as 25 percent on either side of the average strength," Green says. "However, the specially designed glass we are looking at has a range of only 6 percent on either side of the average." This smaller range provides more consistency when manufacturing the glass.

Chemically tempered glass is used in eyeglasses and sunglasses and thermally tempered glass is used in automobile windshields. This new tempering method could allow thinner glass to be used in such things as photocopying machines, scanners and electronic displays that would make them stronger and lighter. Eventually, glasses could be designed with specific strengths and a higher reliability.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Engineered Glass Tempering Halts Cracks." ScienceDaily. ScienceDaily, 26 February 1999. <www.sciencedaily.com/releases/1999/02/990226075422.htm>.
Penn State. (1999, February 26). Engineered Glass Tempering Halts Cracks. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/1999/02/990226075422.htm
Penn State. "Engineered Glass Tempering Halts Cracks." ScienceDaily. www.sciencedaily.com/releases/1999/02/990226075422.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Reuters - US Online Video (Oct. 21, 2014) Major automakers are recalling millions of vehicles due to potentially defective front passenger air bag inflators that can rupture and spray metal shrapnel. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins