Featured Research

from universities, journals, and other organizations

Apparent Violation Of Local Causality With Chemical Trigger Waves - Tickle It Here And It Giggles Over There

Date:
April 12, 1999
Source:
Max Planck Society
Summary:
Any child can tell that upon throwing a stone into a pond, concentric waves emerge where the stone hit the water suface and then approach the shore, whereas the opposite, i.e. a wave emerging from the shore towards the location where the stone hit, is not observed. However such a phenomenon, namely the "telephatic" initiation of a trigger wave in a remote region, can occur with dissipative chemical trigger waves as reported by scientists from the Fritz Haber Institute of the Max Planck Society, Berlin.

Any child can tell that upon throwing a stone into a pond, concentric waves emerge where the stone hit the water suface and then approach the shore, whereas the opposite, i.e. a wave emerging from the shore towards the location where the stone hit, is not observed. However such a phenomenon, namely the "telephatic" initiation of a trigger wave in a remote region, can occur with dissipative chemical trigger waves as reported by scientists from the Fritz Haber Institute of the Max Planck Society, Berlin (Dahlem) (Science Vol. 284, April 9th 1999).

Related Articles


Trigger waves are a widespread phenomenon in spatially extended systems, both in systems that are conservative (ripples on a water surface) and dissipative (active chemical media, nerve axons and heart tissue). They typically originate from the location where a perturbation (trigger) has been applied. If, however, coupling between different parts is nonlocal, that is, when any change of the state affects instantaneously the whole systems, the necessity for local causality will no longer exist.

The experiment was performed with an electrocatalytic reaction on a platinum ring electrode. Sufficiently strong displaced from chemical equilibium, the electrooxidation of formic acid exhibits bistability between a passive and an active state. A local perturbation leads to a local transition from one (metastable) state (for example passive) to the other (the active) state which then spreads through front propagation until the entire system has been switched to the other state. Typically, a perturbation with opposite sign which would make the systems even more passive would not be expected to have any effect. In contrast, the experiments showed that such as perturbation triggered propagating fronts on the opposite side of the ring.

The dominating coupling process in electrochemical systems is ion migration under the influence of an electric field (electromigration). Electrical field effects spread with the velocity of light. Therefore, the coupling is nonlocal meaning that it affects the whole systems practically instantaneously.

The experimental findings could be reproduced by solution of the corresponding reaction-migration equation. The nonlocal coupling function turned out to be positive for small distances (thus enabling front propagation) but negative further away allowing a local perturbation with the wrong sign to manifest itself at a long distance.

Nonlocal effects such as remote triggering are expected whenever a very fast coupling occurs in a systems with slow local dynamics. This also includes biochemical processes coupled by electric field effects as they occur in muscle tissue as well as in neural activity.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Apparent Violation Of Local Causality With Chemical Trigger Waves - Tickle It Here And It Giggles Over There." ScienceDaily. ScienceDaily, 12 April 1999. <www.sciencedaily.com/releases/1999/04/990412075228.htm>.
Max Planck Society. (1999, April 12). Apparent Violation Of Local Causality With Chemical Trigger Waves - Tickle It Here And It Giggles Over There. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/1999/04/990412075228.htm
Max Planck Society. "Apparent Violation Of Local Causality With Chemical Trigger Waves - Tickle It Here And It Giggles Over There." ScienceDaily. www.sciencedaily.com/releases/1999/04/990412075228.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins