Featured Research

from universities, journals, and other organizations

Neutrons Provide Clues To High Temperature Superconductivity

Date:
April 15, 1999
Source:
Max Planck Society
Summary:
More than a dozen years after the discovery of high temperature superconductivity, the microscopic mechanism responsible for this phenomenon is still mysterious. An international group of researchers led by the Max Planck Institute of Solid State Research in Stuttgart (Germany) and Princeton University (USA) reports neutron scattering experiments providing incisive new information about the behavior of electron spins that will be crucial for models of high temperature superconductivity.

More than a dozen years after the discovery of high temperature superconductivity, the microscopic mechanism responsible for this phenomenon is still mysterious. An international group of researchers led by the Max Planck Institute of Solid State Research in Stuttgart (Germany) and Princeton University (USA) reports neutron scattering experiments providing incisive new information about the behavior of electron spins that will be crucial for models of high temperature superconductivity (Nature, April 15, 1999). Superconductivity was discovered in 1911 and occurs in many ordinary metals such as lead and aluminum at very low temperatures (below about 5 degrees above absolute zero, or about 290 degrees below room temperature). In the superconducting state, electrons can flow through the material without any resistance. Electrical currents in a superconductor therefore do not decay by heating up the material, as they would in a nonsuperconducting metal. In principle, superconductors can therefore be used to transmit currents without any losses. Despite these advantages, traditional superconductors have found few practical applications, as a lot of energy has to be invested to cool them down to the required temperatures. The discovery in 1986 of chemical compounds that superconduct at much higher temperatures has therefore caused much excitement. The current record (at ambient pressure) stands at about 135 degrees above absolute zero (or about 160 degrees below room temperature), so that much less cooling is required to initiate superconductivity. In these "high temperature" superconductors, the chemical elements copper and oxygen are arranged in a layered structure, with other elements sandwiched between the layers. The complex chemistry and materials physics of high temperature superconductors has slowed down the development of technological applications. Nevertheless, promising applications ranging from radio-frequency filters and magnetic field sensors to electrical motors are now beginning to emerge. What is missing so far is a theoretical understanding of the origin of high temperature superconductivity in the copper oxides. The theory of low temperature superconductivity in ordinary metals was developed in 1956 and is now well accepted. Electrons which normally move through the material individually and lose energy by colliding with impurities and other electrons are paired up in the superconducting state. Electrons also carry a tiny magnetic moment (the so-called "spin"), but the spins of two electrons in a pair are oriented in an antiparallel fashion so that the pair is actually nonmagnetic. Such electron pairs, which can move through the material without dissipating energy, also exist in high temperature superconductors. The "glue" that keeps the pairs together in the copper oxides, however, is still mysterious. Most theorists now agree that the mechanism that leads to pairing in traditional superconductors, vibrations of the atomic nuclei, cannot be responsible for high temperature superconductivity. The experiment reported in Nature provides important clues to what may take the place of atomic vibrations in pairing up the electrons. The researchers used neutrons produced in research reactors in Saclay and Grenoble, France, to excite and detect fluctuations of the electron spins in a particular high temperature superconductor of chemical formula Bi2Sr2CaCu2O8. Since neutrons carry a magnetic moment and penetrate deeply into most materials, neutron scattering is a powerful probe of magnetism in solids. The neutron scattering experiment revealed a "collective" spin excitation in Bi2Sr2CaCu2O8, that is, in the superconducting state all of the electron spins suddenly begin to move in unison. Such collective spin excitations are normally found only in magnetically ordered materials such as iron (see figure). The fact that similar excitations also exist in high temperature superconductors points towards a magnetic pairing mechanism. Efforts to develop a theoretical description of such a mechanism are still controversial, but the neutron experiments are an important step forward. It is to be hoped that a comprehensive theory of high temperature superconductivity will lead to the design of materials which superconduct at even higher temperatures, perhaps eventually room temperature.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Neutrons Provide Clues To High Temperature Superconductivity." ScienceDaily. ScienceDaily, 15 April 1999. <www.sciencedaily.com/releases/1999/04/990415065141.htm>.
Max Planck Society. (1999, April 15). Neutrons Provide Clues To High Temperature Superconductivity. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/1999/04/990415065141.htm
Max Planck Society. "Neutrons Provide Clues To High Temperature Superconductivity." ScienceDaily. www.sciencedaily.com/releases/1999/04/990415065141.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins