Featured Research

from universities, journals, and other organizations

Simulation Uses Quantum Mechanics To Understand Nanoelectronics

Date:
July 8, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
A computer simulation developed at the University of Illinois is helping scientists better understand the strange world of nanoelectronics -- where a single electron can control a device, but quantum mechanics is required to describe the behavior of that electron.

CHAMPAIGN, Ill. -- A computer simulation developed at the University of Illinois is helping scientists better understand the strange world of nanoelectronics -- where a single electron can control a device, but quantum mechanics is required to describe the behavior of that electron.

"We have simulated the operation of a silicon quantum-dot, floating-gate flash memory device," said Jean-Pierre Leburton, a U. of I. professor of electrical and computer engineering and a researcher at the university's Beckman Institute for Advanced Science and Technology. "The simulation can be used to explore and enhance the physical characteristics in future commercial devices."

Small, fast and rugged, flash memories can serve as temporary data storage in portable computers and cellular phones, and are key elements in digital imaging. They will eventually replace conventional magnetic storage media, Leburton said. "As fabrication technology continues to improve, the floating gates in flash memories may be reduced to nanometer-size structures that behave like quantum dots."

But as devices shrink to nanometer proportions, classical theory breaks down and quantum mechanics takes over. "You come to a point where things have become so small, you can identify the effects of a single electron charge with its wave-like behavior," Leburton said.

This "single-electron effect" reflects the granularity of matter in the nanoelectronic world. Not only must electrical current be understood as discrete particles governed by quantum mechanics (instead of millions of electrons flowing like a fluid); the physical composition of the device itself also must be taken into consideration.

"For example, the conductivity of a semiconductor is changed during manufacture by doping the material with impurities," Leburton said. "In the past, this doped material could be treated as a uniformly distributed background. Now, because of the incredibly small size, the characteristics of the device will change depending upon where atomic impurities are located."

To more thoroughly study the behavior of nanoelectronic devices, Leburton and graduate student Aaron Thean developed special simulation software. Their code consists of a three-dimensional,

self-consistent solver with the necessary quantum mechanics to capture both the granularity of matter and the wave nature of the electron.

"In our simulation, you can see the wave-particle duality of the electron," Leburton said. "On one hand you see the granularity of matter due to the presence of a single, charged particle. On the other hand you see the wave nature of the electron, manifested in the form of additional capacitances."

By taking both of these effects into consideration, the computer simulation can help scientists and engineers design and optimize the performance of the next generation of nanoscale electronic devices.

The researchers discuss their simulation in the June issue of IEEE Electron Device Letters.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Simulation Uses Quantum Mechanics To Understand Nanoelectronics." ScienceDaily. ScienceDaily, 8 July 1999. <www.sciencedaily.com/releases/1999/07/990708075902.htm>.
University Of Illinois At Urbana-Champaign. (1999, July 8). Simulation Uses Quantum Mechanics To Understand Nanoelectronics. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/1999/07/990708075902.htm
University Of Illinois At Urbana-Champaign. "Simulation Uses Quantum Mechanics To Understand Nanoelectronics." ScienceDaily. www.sciencedaily.com/releases/1999/07/990708075902.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins