Featured Research

from universities, journals, and other organizations

Light Microscopy: Resolution Beyond The Wavelength Barrier

Date:
July 27, 1999
Source:
Max Planck Society
Summary:
The resolution of focusing light microscopes has been traditionally limited by the wave nature of light. This limit was overcome by scientists at the Max Planck Institute for Biophysical Chemistry in Goettingen/Germany, by using two laser beams, in which one beam illuminated the sample while the second beam sculpted the fluorescence spot generated by the first (Optics Letters, 15 July 1999).

The resolution of focusing light microscopes has been traditionally limited by the wave nature of light. This limit was overcome by scientists at the Max Planck Institute for Biophysical Chemistry in Goettingen/Germany, by using two laser beams, in which one beam illuminated the sample while the second beam sculpted the fluorescence spot generated by the first (Optics Letters, 15 July 1999).

The resolving power of a light microscope is intimately connected with the smallest light spot that can be focused at a sample. In the 1870’s, searching for better focusing, Ernst Abbe, then head of the company Carl-Zeiss and physics professor in Jena, found a law that fated the art in microscopy for the century to come. Due to its wave nature, he reasoned, light cannot be focused to a infinitely small spot for it will be blurred by diffraction. The smallest possible spot would be about a third of a wavelength in diameter, which is about 200 nm. Features closer than that should not be distinguishable.

In the subsequent quest for higher resolution, it seemed evident that focused light had to be abandoned. Hence, electron and scanning probe microscopes such as the atomic force and the near-field optical microscope were invented. In spite of their achieving a thousand times higher resolution, these microscopes could not really push aside the focusing microscope in biological research. The reason is that besides being detrimental in most cases, they are, at the end of the day, limited to the specimen surface. The focusing light microscope is the only way to allow the imaging of intact transparent specimens in three dimensions, especially when tagged with fluorescent dyes. Thus, it is indeed unfortunate that its resolution is hampered by diffraction.

In an Optics Letters paper, Thomas A. Klar and Stefan W. Hell of the Max Planck Institute for Biophysical Chemistry in Goettingen/Germany, now report they have beaten Abbe’s limit in a focusing fluorescence microscope. The idea is simple: In order to make the fluorescence spot smaller, one has to inhibit the fluorescence from its rim. The ingredients for sculpting the fluorescence spot are ultrashort laser pulses, the effect of stimulated emission, and a clever optical arrangement. Instead of using a single laser beam they use two beams of different colors, each of them producing picosecond pulses. Whereas the first pulse excites the fluorophore, the slightly red-shifted beam is able to induce the effect of stimulated emission. Stimulated emission was predicted by Einstein in 1917 and forms the basis of laser action. However, stimulated emission in the new microscope is not used to amplify a beam but to force the molecules to the ground state by carrying away their energy. Hence, the stimulating red beam instantaneously "cooles off" the excited fluorophore without destroying it. By moving the stimulating beam to the rim of the excitation spot, the researchers effectively switched off the fluorescence from the outer part of it, so that the fluorescence spot was 30 % smaller than what Abbe would have predicted.

"By turning on the stimulating beam we can switch from classical resolution down to sub-Abbe resolution," says Thomas Klar, a doctoral student in Stefan Hell’s laboratory. Hell is pleased with this progress because his initial model predicts a resolution potential of the order of a few tens of nanometers. As the principle is applicable to any organic molecule, not only to the fluorescent ones, applications can be envisaged whenever the excited state is effective in a three- or four level energy system. Future applications may well include spatially localized pump-probe spectroscopy and high resolution data storage. Once realized in a cell, this microscope would be fine enough as to literally shed new light on the relationship between structure and function of many cell organelles as well as on their three-dimensional architecture.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Light Microscopy: Resolution Beyond The Wavelength Barrier." ScienceDaily. ScienceDaily, 27 July 1999. <www.sciencedaily.com/releases/1999/07/990727073130.htm>.
Max Planck Society. (1999, July 27). Light Microscopy: Resolution Beyond The Wavelength Barrier. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/1999/07/990727073130.htm
Max Planck Society. "Light Microscopy: Resolution Beyond The Wavelength Barrier." ScienceDaily. www.sciencedaily.com/releases/1999/07/990727073130.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins