Featured Research

from universities, journals, and other organizations

NASA's JPL Licenses High-Performance Gyroscope On A Chip To Hughes

Date:
August 16, 1999
Source:
NASA/Jet Propulsion Laboratory
Summary:
A new high-performance, long-life gyroscope that serves as a balancing "inner ear" for spacecraft has been licensed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., to the Hughes Space and Communications Company, El Segundo, Calif.

A new high-performance, long-life gyroscope that serves as a balancing "inner ear" for spacecraft has been licensed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., to the Hughes Space and Communications Company, El Segundo, Calif.

Related Articles


Spacecraft require gyroscopes to maintain orientation in flight. Gyroscopes determine changes in angular direction, traditionally by virtue of a rapidly spinning, heavy mass. Spinning mass gyroscopes, originally the gyroscopes of choice for space applications, require lubrication and eventually wear out. By contrast, the newly developed JPL/Hughes microgyro does not have any specific life-limiting features. The resulting long life of more than 15 years is a significant plus for space applications.

Jointly developed by JPL and Hughes, this new gyroscope is lighter, cheaper, higher-performing and less complex than its conventional counterparts while uniquely designed for continuous space operation. Its dimensions are 4 by 4 millimeters (0.16 by 0.16 inches)), smaller than a shirt button, and its weight is less than one gram just under 0.03 ounces.

"This agreement typifies the type of cooperation between the space program and industry that provides benefits back to American business," said Merle McKenzie, manager of JPL's Commercial Technology and Regional Economic Development Program.

Other gyroscopes designed for use in space use solid-state technology -- that is, without any moving parts -- provide the required long lifetime, but these instruments are very expensive, power-hungry and bulky, weighing up to 20 pounds or more.

Current gyroscopes on a chip, only useful for some terrestrial applications, can measure rotation at just over the speed of the minute hand on a watch, but no slower, whereas the newly licensed microgyro can measure rotation 30 times slower than the hour hand. In the world of gyroscopes for space, measurement of extremely slow rotation is highly desirable -- the slower the better -- because the slowest of rotations can take a spacecraft significantly off target over an extended period.

Unlike its microgyro counterparts, the JPL/Hughes instrument features superior performance in both space and terrestrial environments, making it a versatile, dual-use technology.

Like its current microgyro counterparts, the JPL/Hughes version relies on measurement of vibrations. "The heart of the instrument is a cloverleaf design that is tied down and vibrates at a very high speed," said JPL's Dr. Tony Tang, engineering lead for the development of the instrument. "We look for changes in the vibration of a light piece of micro-machined silicon that has no moving parts." The exclusive use of silicon helps to reduce costs, since this durable material is now routinely used for computer chips and it is thus more easily fabricated than other materials.

The new microgyroscope, including its control electronics, was created out of a technology cooperation agreement between Hughes and JPL beginning in 1997. Hughes recently acquired exclusive rights from the California Institute of Technology to develop the microgyro for commercial space applications. Caltech has the right to elect title to inventions developed at JPL under its contract with NASA to manage JPL.

Further details about JPL's technology transfer activities are available at http://techtrans.jpl.nasa.gov/tu.html.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "NASA's JPL Licenses High-Performance Gyroscope On A Chip To Hughes." ScienceDaily. ScienceDaily, 16 August 1999. <www.sciencedaily.com/releases/1999/08/990816070701.htm>.
NASA/Jet Propulsion Laboratory. (1999, August 16). NASA's JPL Licenses High-Performance Gyroscope On A Chip To Hughes. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/1999/08/990816070701.htm
NASA/Jet Propulsion Laboratory. "NASA's JPL Licenses High-Performance Gyroscope On A Chip To Hughes." ScienceDaily. www.sciencedaily.com/releases/1999/08/990816070701.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins