Featured Research

from universities, journals, and other organizations

New MIT Probe Gathers Data For Better Polymers

Date:
September 1, 1999
Source:
Massachusetts Institute Of Technology
Summary:
In work that could lead to superior varieties of nylon and other commercially important polymers, MIT engineers have developed the first probe that can detect the motion of molecules in these materials as they are being stretched.

CAMBRIDGE, Mass -- In work that could lead to superior varieties of nylon and other commercially important polymers, MIT engineers have developed the first probe that can detect the motion of molecules in these materials as they are being stretched.

Related Articles


"We want to understand on a molecular level what allows a polymer to stretch and deform," said Associate Professor Karen K. Gleason of the Department of Chemical Engineering, who will give a talk on the work August 25 at the national meeting of the American Chemical Society.

Understanding such molecular details "will allow us to design these materials from a fundamental viewpoint," Professor Gleason said, which could in turn improve their mechanical properties. Historically, polymeric materials with specific properties have been created by trial and error with little knowledge of exactly why a given formulation works.

The new probe combines a stretching device with the electronics for nuclear magnetic resonance (NMR) spectroscopy. NMR probes for exploring polymers, materials composed of chains of repeating subunits, are common. Until now, however, all focused on a given material before or after it was stretched, or put under stress. The MIT instrument is the first to detect what's happening during the process.

"We're trying to capture the motion of the polymer while it's actively being deformed," Professor Gleason said, "rather than looking at a 'dead' sample, or one in which deformation--and motions--have ceased."

The stretching device and polymer sample, inside a tube about 3 feet long by 3 inches in diameter, are placed within the NMR spectrometer's superconducting magnet. As the polymer is pulled, NMR captures its molecular motions. "These two techniques have been used individually to study polymers, but until now they haven't been used together," Professor Gleason said.

The researchers are currently using the probe to study man-made polymers like nylon. Professor Gleason noted, however, that it might have applications to different systems. For example, other researchers might want to look at active changes in biopolymers like cartilage.

Her colleagues in the work are Robert E. Cohen, the Raymond A. and Helen E. St. Laurent Professor of Chemical Engineering, and chemical engineering graduate student Leslie S. Loo. Professor Gleason noted that the research is part of an interdisciplinary research group at MIT on the rational design of polymeric materials that is led by Professor Mary Boyce of the Department of Mechanical Engineering.

The work is sponsored by the NSF through MIT's Center for Materials Science and Engineering.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "New MIT Probe Gathers Data For Better Polymers." ScienceDaily. ScienceDaily, 1 September 1999. <www.sciencedaily.com/releases/1999/09/990901075928.htm>.
Massachusetts Institute Of Technology. (1999, September 1). New MIT Probe Gathers Data For Better Polymers. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/1999/09/990901075928.htm
Massachusetts Institute Of Technology. "New MIT Probe Gathers Data For Better Polymers." ScienceDaily. www.sciencedaily.com/releases/1999/09/990901075928.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins