Featured Research

from universities, journals, and other organizations

A Growth Factor Reverses Nerve Damage In Diabetic Animals

Date:
November 5, 1999
Source:
Washington University School Of Medicine
Summary:
A recent study reveals that long-term nerve damage in rats with diabetes can be reversed by treatment with an insulin-like protein. Because the damage mimics some of what's seen in people with diabetes, the results suggest that the protein could one day be used to prevent certain nerve complications of the disease.

St. Louis, Nov. 1, 1999 -- A recent study reveals that long-term nerve damage in rats with diabetes can be reversed by treatment with an insulin-like protein. Because the damage mimics some of what's seen in people with diabetes, the results suggest that the protein could one day be used to prevent certain nerve complications of the disease.

"You may be able to prevent some diabetic nerve complications, even in people who don't control their diabetes well," says Robert E. Schmidt, M.D., Ph.D. Schmidt is a professor of pathology at Washington University School of Medicine in St. Louis. He also is lead author of an article about the study in this month's American Journal of Pathology.

As many as 60 percent of people with diabetes have some damage to the peripheral nervous system, which receives and sends messages to the hands, feet and other outlying sites in the body. Diabetic neuropathy also can occur in the sympathetic part of the autonomic nervous system, a specialized portion of the nervous system that controls involuntary reflexes. Such damage can produce complications such as irregularities in the control of blood pressure and bouts of diarrhea or constipation.

Nerve cells and their branch-like extensions called axons are vulnerable to abnormally high levels of glucose in the bloodstream that occur during diabetes. In the sympathetic nervous system, the outermost tips of axons swell into doorknob-like structures as a result. These nerve endings allow nerve cells to communicate with each other, and the swelling impedes this process. Schmidt studied the effect of an insulin-like growth factor called IGF-I on diabetic rats. His group examined the animals' sympathetic nervous tissue and determined that the neuropathy mimicked that seen in humans. "The parallels in the pathologic findings in diabetic humans and rats were so strong that we thought that similar processes were at work in rats' nerve cells as in humans with diabetes," Schmidt says.

After the rats had been diabetic for six months -- enough time for nerve damage to occur -- the researchers gave some of them daily injections of IGF-I for two months.

Compared with untreated counterparts, these rats had 80 percent fewer swollen nerve endings in the sympathetic nervous system. And the swelling tended to be less pronounced than in the untreated rats.

Schmidt is quick to note that swelling of nerve endings still occurs to a limited extent in rats treated with IGF-I. But he also has found that healthy rats develop the swellings in small numbers as they age. "A simplistic view is that diabetes might accelerate the aging of sympathetic nerve cells," he says.

He and his colleagues will evaluate the cellular changes occurring in diabetic rats to determine how the swelling occurs. They also will try to determine how IGF-I injections ameliorate the damage.

The growth factor doesn't stop diabetes in its tracks because treated animals are unable to control their blood-glucose levels. IGF-I treatment may instead compensate for the loss of a factor that keeps nerve cells healthy, or it may be a nourishing agent itself. "We have a sense of the potential relevance of the growth factor," Schmidt says. "Now we have to figure out how it works."

Researchers elsewhere are evaluating IGF-I in clinical trials on people with neurodegenerative diseases such as amyotrophic lateral sclerosis, or Lou Gehrig's disease.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "A Growth Factor Reverses Nerve Damage In Diabetic Animals." ScienceDaily. ScienceDaily, 5 November 1999. <www.sciencedaily.com/releases/1999/11/991105074025.htm>.
Washington University School Of Medicine. (1999, November 5). A Growth Factor Reverses Nerve Damage In Diabetic Animals. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/1999/11/991105074025.htm
Washington University School Of Medicine. "A Growth Factor Reverses Nerve Damage In Diabetic Animals." ScienceDaily. www.sciencedaily.com/releases/1999/11/991105074025.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Thousands Who Can't Afford Medical Care Flock to Free US Clinic

Thousands Who Can't Afford Medical Care Flock to Free US Clinic

AFP (July 23, 2014) America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th. Thousands turned out for a free clinic run by "Remote Area Medical" with a visit from the Governor of Virginia. Duration: 2:40 Video provided by AFP
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins