Featured Research

from universities, journals, and other organizations

Plaque, The Hallmark Of Alzheimer's Disease Is Revealed In Three Dimensions

Date:
November 23, 1999
Source:
Duke University Medical Center
Summary:
For the first time, researchers have been able to produce three-dimensional images of plaque, the blobs of "garbage" that clog the brains of Alzheimer's disease patients. Previously, plaque could only be viewed after brain tissue was diced and sliced and put under a microscope. This milestone, made possible by marrying high-resolution magnetic resonance microscopy (MRM) with powerful computers, is the first step toward non-invasive detection of plaques in Alzheimer's disease.

DURHAM, N.C. -- For the first time, researchers have been able to produce three-dimensional images of plaque, the blobs of "garbage" that clog the brains of Alzheimer's disease patients. Previously, plaque could only be viewed after brain tissue was diced and sliced and put under a microscope.

This milestone, made possible by marrying high-resolution magnetic resonance microscopy (MRM) with powerful computers, is the first step toward non-invasive detection of plaques in Alzheimer's disease. The researchers, from Duke University Medical Center, hope ongoing studies in human and animal brain tissue will ultimately answer the central enigma in Alzheimer's disease: Which comes first -- changes in behavior or the build-up of plaque?

The scientists also say that, using the technique, it might be possible to watch the development of plaque as it occurs in transgenic mice altered to produce the substance in their brains. In this way, the effect of experimental drugs designed to treat Alzheimer's disease can be tested as the disease progresses.

"If you can visualize the plaque in vivo to see how its development relates to cognitive behavior, you can answer the question of cause and effect," said Dr. Helene Benveniste, a Duke anesthesiologist and department of radiology brain researcher. She is the lead author on the study, published in the Nov. 23 issue of the Proceedings of the National Academy of Sciences. She said in an interview that researchers who study Alzheimer's disease are divided over the question of whether the disorder results from the development of plaques or whether those deposits are just "gravestones" for damage that has occurred due to a different factor. Plaques are made up of amyloid, a fibrous network of protein not usually found in the body, as well as lots of neuronal debris.

Working with Benveniste on the study were Duke investigators G. Allan Johnson, director of the Center for In Vivo Microscopy, Gillian Einstein, Katie Kim, and Dr. Christine Hullette. The study was funded by the Paul Beeson Foundation, the Alzheimer's Association and by the National Institutes of Health, which supports Duke's Center for In Vivo Microscopy where the work was done.

MRM technology was designed by Duke researchers in order to create highly detailed images of tiny structures and specimens. The technique is a refined version of magnetic resonance imaging (MRI) used in hospitals, but is much more powerful, using higher magnetic fields to create superb resolution. To make their three-dimensional images of plaque, the researcher removed tiny "plugs" of brain tissue from patients who had agreed to a rapid autopsy when they died; that is, an autopsy performed with hours of death so that brain chemistry is still fresh.

To image plaque inside the centimeter-wide brain samples, a specially-engineered magnetic coil was developed by Johnson so that it could come as close to the tissue as possible. After a number of experimental tries, the team found the right combination of settings for spatial resolution that could image the plagues embedded inside the brain tissue without distortion. They then took hundreds of individual images while rotating the sample, so that when a computer blended all the images together, a high-resolution three-dimensional portrait of brain plaques was created.

"When reconstituted in a 3D image, plagues looks like small round balls, basically spots of garbage, floating in space," Benveniste said.

The researchers do not plan to use the technique to confirm a diagnosis of Alzheimer's disease in patients -- currently, the only way to make sure a person has died from the disorder is to examine brain tissue that has been laboriously sliced and stained. "Current clinical magnetic resonance technology does not have the resolution to allow visualization of plaques inside the brain of a living human," Benveniste said. "This kind of detailed imaging is only possible in small animals."

Rather, they are viewing the advance as a research tool. With the use of transgenic mice, they have moved closer to the goal of understanding the pathology of the disease. These mice contain a human gene known to produce excess amounts of plaque material in the brain and it offers a good animal model of how plaque may affect brain functioning, Benveniste said. To create images of living brains, the mice are briefly anesthetized so they don't move within the MRM machine and distort the image. In their ongoing benchmark study, the researchers are creating a library of images to chart growth and development of the mice brains. This effort helps them determine the best way to track changes in plaque growth as the mice age. They will then be able to correlate changes in cognitive behavior with plaque growth in future experiments.

In what Benveniste describes as the "next generation of molecular biology," the researchers might be able to track, in living animal brains, the success of experimental drugs aimed at stopping the growth of plaques. "The dream of every brain researcher is to be able to follow, over time, both development of brain disease and the effects of drugs designed to combat them," she said. "If it works for this disease, it could work for other disorders and therapies. Time will tell."

###

Note to editors: The photo is available in color as Beneviste.jpg at http://photo1.dukenews.duke.edu. An image of brain plaque is located at http://wwwcivm.mc.duke.edu/civmProjects/Alzheimers/alz.html.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Plaque, The Hallmark Of Alzheimer's Disease Is Revealed In Three Dimensions." ScienceDaily. ScienceDaily, 23 November 1999. <www.sciencedaily.com/releases/1999/11/991123080107.htm>.
Duke University Medical Center. (1999, November 23). Plaque, The Hallmark Of Alzheimer's Disease Is Revealed In Three Dimensions. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1999/11/991123080107.htm
Duke University Medical Center. "Plaque, The Hallmark Of Alzheimer's Disease Is Revealed In Three Dimensions." ScienceDaily. www.sciencedaily.com/releases/1999/11/991123080107.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins