Featured Research

from universities, journals, and other organizations

Scientists Uncover Molecular Basis Of Fatal Childhood Immunodeficiency Disorder

Date:
December 7, 1999
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Scientists at UT Southwestern Medical Center at Dallas have found that a rare but fatal genetic disorder in children is caused by defects in the protein perforin. It's a finding that could improve understanding of how the human immune system is regulated and lead to treatments and cures for diseases like lupus and multiple sclerosis.

DALLAS - December 3, 1999 - Scientists at UT Southwestern Medical Center at Dallas have found that a rare but fatal genetic disorder in children is caused by defects in the protein perforin. It's a finding that could improve understanding of how the human immune system is regulated and lead to treatments and cures for diseases like lupus and multiple sclerosis.

Related Articles


Dr. Vinay Kumar, professor of pathology, graduate student Susan Stepp and colleagues report in today's issue of Science that their study of familial hemophagocytic lymphohistiocytosis (FHL) showed that perforin, found in white blood cells of the human immune system, is not only necessary for the destruction of abnormal cells but is also implicated in the down-regulation of activated immune defense cells.

"Through the study of these patients, we have uncovered an extremely important mechanism by which the human immune system is regulated. This information has broad implications for our understanding of other diseases of immune dysregulation, including diseases that are not due to inherited defects in perforin," said senior author Kumar.

The authors believe that knowing that perforin-containing immune cells have important regulatory functions will improve understanding of autoimmune diseases like lupus and multiple sclerosis, in which the immune system destroys normal tissues.

FHL is characterized by an acute deregulation of the immune system. Previously healthy infants and young children suddenly become sick with fever, enlarged spleens and livers, and blood and neurological abnormalities. Patients accumulate overactivated immune-system cells and signaling proteins that affect the behavior of other cells. Children can be treated with immunosuppressive agents, but a bone-marrow transplant is the only cure.

Previous research by the French and Swedish co-authors had shown that most of the patients' have a genetic defect linked to chromosome 10.

Kumar and collaborators studied eight unrelated chromosome 10-linked FHL patients. Because perforin was previously mapped to chromosome 10 in the same region as the chromosome 10-linked FHL cases, they analyzed the deoxyribonucleotide sequence of the patients' perforin genes. They found defects in all.

"We believe that the primary inherited defect of FHL is the inability of the cells containing perforin to destroy activated immune cells and thereby regulate the immune system's response to certain childhood infections," said Stepp, the paper's lead author. "In the absence of such regulation, the uncontrolled activation and proliferation of the immune cells results in FHL."

Other UT Southwestern investigators participating in the study were Dr. Michael Bennett, professor of pathology, and Sadhna Bhawan, a summer student from Boston University. Researchers from the University of North Texas Health Science Center, Fort Worth; Sweden's Karolinska Institutet; and France's Unité de Recherches sur le Dévelopment Normal et Pathologigue du Système Immunitaire INSERM were co-authors of the study.

Grants from the National Institutes of Health, the French Institute of Health and Medical Research and the Association Francaise contre les Myopathies supported the research.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Scientists Uncover Molecular Basis Of Fatal Childhood Immunodeficiency Disorder." ScienceDaily. ScienceDaily, 7 December 1999. <www.sciencedaily.com/releases/1999/12/991207074847.htm>.
University Of Texas Southwestern Medical Center At Dallas. (1999, December 7). Scientists Uncover Molecular Basis Of Fatal Childhood Immunodeficiency Disorder. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/1999/12/991207074847.htm
University Of Texas Southwestern Medical Center At Dallas. "Scientists Uncover Molecular Basis Of Fatal Childhood Immunodeficiency Disorder." ScienceDaily. www.sciencedaily.com/releases/1999/12/991207074847.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) — The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) — Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Group Encourages Black Moms to Breastfeed

Group Encourages Black Moms to Breastfeed

AP (Jan. 29, 2015) — A grassroots effort is underway in several US cities to encourage more black women to breastfeed their babies by teaching them the benefits of the age-old practice, which is sometimes shunned in African-American communities. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Sugary Drinks May Cause Early Puberty In Girls, Study Says

Sugary Drinks May Cause Early Puberty In Girls, Study Says

Newsy (Jan. 28, 2015) — Harvard researchers found that girls who consumed more than 1.5 sugary drinks a day had their first period earlier than those who drank less. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins