Featured Research

from universities, journals, and other organizations

New Understanding Of A Key Control Mechanism In The Brain

Date:
January 17, 2000
Source:
Weizmann Institute
Summary:
Despite more than a century of research on inhibitory neurons, very little is known on how this small population (10-20% of brain neurons) exerts its controlling effect on the brain. Pivotal for normal brain development, learning, and memory, it is not surprising that inhibitory neurons are involved in most neurological disorders. A recent study at the Weizmann Institute of Science, published in the January 2000 issue of Science, reveals key principles underlying the design and function of this inhibitory system.

REHOVOT, Israel -- January 12, 2000 -- Despite more than a century of research on inhibitory neurons, very little is known on how this small population (10-20% of brain neurons) exerts its controlling effect on the brain. Pivotal for normal brain development, learning, and memory, it is not surprising that inhibitory neurons are involved in most neurological disorders. A recent study at the Weizmann Institute of Science, published in the January 2000 issue of Science, reveals key principles underlying the design and function of this inhibitory system.

Related Articles


By repressing the level of activity in neighboring neurons, inhibitory neurons (I-neurons) prevent the brain from quickly spinning out of control into hyper-excited states or full-blown epilepsy. One of the problems that children with autism and attention deficit hyperactivity disorders (ADHD) have is I-neuron malfunction: their inhibitory system does not effectively suppress unwanted information, impeding their ability to make choices. I-neuron malfunction is involved in memory disorders (such as Alzheimer's disease), neural trauma, and addictions. It also plays a role in a wide range of psychiatric disorders, such as depression, obsessive compulsive disorders, and schizophrenia.

In the past, researchers basically thought that I-neurons just sprayed an inhibitory neurotransmitter called GABA onto their neighbors. But this did not explain how they inhibited the right neurons at exactly the right time and to the right degree. The new study carried out in the laboratory of Prof. Henry Markram of the Weizmann Institute's Neurobiology Department shows how they achieve this.

Controlling the neuron crowd

The research team found new types of I-neurons, revealing that this tiny population is several times more diverse than previously thought. Further, using new methods that they developed, the researchers succeeded in recording directly how individual inhibitory neurons control their neighbors. They found that I-neurons build complex synapses (connections) onto their target neurons. The synapses selectively filter inhibitory messages, enabling I-neurons to shut down the activity in neighbors as required. These synapses act as fast-switching "if-then" filtering gates that allow inhibition to be applied only at the exact millisecond and to the right degree.

Each I-neuron establishes complex if-then gates onto thousands of neighboring neurons and is therefore "in charge" of controlling their activity. The gates allow I-neurons to rapidly switch their focus onto any one neuron that they are connected to. This ingenious design principle is what enables the small group of I-neurons to exert such a sophisticated effect, simultaneously "giving personal attention" to the activity of each of the neurons to which they are connected.

At the negotiating table

The researchers showed that a "discussion" between I-neurons and target neurons is involved in deciding which type of if-then gate should be set up to filter the inhibitory message. This decision-making process could allow each neuron in the brain to be inhibited in a potentially unique way. Dubbed the "interaction principle," this process generates maximal diversity of if-then gates, allowing more complex and finer control over large numbers of neurons.

A potential brain-mapping tool

The researchers went on to reveal a remarkable ability of I-neurons: they can sense neurons that share the same functions in the brain. I-neurons "select" groups of target neurons to construct the same type of if-then gates, possibly enabling the I-neurons to control groups of neurons collectively.

It also means that I-neurons can "smell-out" neurons in the brain that collaborate in the most elementary functions even if they seem different in almost every other way (i.e., they can identify neurons descended from the same "ancestors"). "I-neurons can trace family trees of neurons. In other words, they could help us to work out how neurons are related to each other. This could one day enable us to map the functional aspect of the brain according to the genealogy of neurons - an organizing principle that we never dreamt possible," says Markram. The researchers believe that the ability to detect functionally related groups in the brain, called "the homogeneity principle," results from common signal molecules released by target cells. I-neurons may use the signal molecules to determine what kind of if-then gates to build. Future research designed to identify the nature of these molecules could yield a potent tool for mapping the functional structure of the brain.

###

This research was funded by the Human Frontier Science Program Organization, the Israel Ministry of Science, the Israel Science Foundation, the US Navy, Minna James Heineman Stiftung, the Abramson Family Foundation and the Nella and Leon Benoziyo Center for Neurosciences. A member of the Weizmann Institute's Neurobiology Department, Prof. Henry Markram holds the Joseph D. Shane Career Development Chair.

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world's foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and the enhancement of humanity. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Story Source:

The above story is based on materials provided by Weizmann Institute. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute. "New Understanding Of A Key Control Mechanism In The Brain." ScienceDaily. ScienceDaily, 17 January 2000. <www.sciencedaily.com/releases/2000/01/000117072109.htm>.
Weizmann Institute. (2000, January 17). New Understanding Of A Key Control Mechanism In The Brain. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2000/01/000117072109.htm
Weizmann Institute. "New Understanding Of A Key Control Mechanism In The Brain." ScienceDaily. www.sciencedaily.com/releases/2000/01/000117072109.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins