Featured Research

from universities, journals, and other organizations

Scientists Develop Transgenic Mouse That Models Parkinson's, Related Disorders

Date:
February 21, 2000
Source:
University Of California, San Diego
Summary:
The first mouse model genetically programmed to simulate motor deficits and brain alterations found in Parkinson’s disease and related disorders has been developed by a team of scientists at the University of California, San Diego; the University of California, San Francisco, and the Gladstone Institute of Neurological Disease.

The first mouse model genetically programmed to simulate motor deficits and brain alterations found in Parkinson’s disease and related disorders has been developed by a team of scientists at the University of California, San Diego; the University of California, San Francisco, and the Gladstone Institute of Neurological Disease. The research was led by Eliezer Masliah, M.D., of the UCSD Departments of Neurosciences and Pathology.

Related Articles


The investigators report in the Feb. 18 issue of Science that mice bred to express a human protein called alpha-synuclein in the brain develop protein deposits in specific brain regions associated with Parkinson’s disease, and also have impaired motor function.

"Previous studies have shown increased levels of this protein in the brain cells of Parkinson’s patients, but whether they were a cause or result of the disease has not been clear," said Masliah. "With these results we have demonstrated that alpha-synuclein is in fact involved in the onset of diseases such as Parkinson’s. The development of symptoms in these genetically altered mice resembles disease progression in humans. This gives us a new model for studying Parkinson’s disease and related disorders such as Alzheimer’s disease."

The overexpression of alpha-synuclein in the brain cells of the mice is consistent with the accumulation of this protein in Parkinson’s patients. Alzheimer’s disease is also characterized by an abnormal accumulation of proteins in neurons, and Alzheimer’s and Parkinson’s disease frequently overlap.

"For many of the chemical and pathological changes one finds in brain diseases, it is hard to tell if they are a cause or consequence of the disease," said study co-author Lennart Mucke, M.D., Professor of Neurology and Neuroscience at UCSF and Director of the Gladstone Institute of Neurological Disease in San Francisco. "Our findings in experimental models demonstrate for the first time that accumulation of human alpha-synuclien in neurons actually causes a number of alterations found in these human disorders, namely, an abnormal build-up of proteins in brain cells, a loss of specific neuronal connections, and impairments of motor skills. These results suggest that blocking the accumulation of alpha-synuclein might help prevent or treat Parkinson’s and related conditions."

In this study, the human gene for alpha-synuclein was inserted into fertilized mouse egg cells. The eggs were then implanted into mice, which produced offspring expressing the gene in neurons. Among the offspring were animals with high levels of protein in the brain; these animals have been used to develop a colony of transgenic mice that consistently develop brain pathology and symptoms resembling those in patients with Parkinson’s disease.

Parkinson’s disease results from the degeneration of specific brain cells that regulate the activity of other brain cells by releasing a chemical called dopamine.

"Previous models for Parkinson’s disease in mice have been achieved through chemical or surgical techniques that interfere with the dopaminergic system, but it is unclear whether these interventions simulate what triggers the disease in people," said Masliah.

In this model, a protein that is known to accumulate in humans with Parkinson’s disease predisposes the mice to the age-related degeneration of dopaminergic connections between brain cells, and to the development of motor deficits, the investigators say. This model sheds light on the role of alpha-synuclein in neurodegenerative disorders and will be useful in the development and testing of new drugs for these conditions, they add.

The study’s co-authors also include Edward Rockenstein, Margaret Mallory, Makoto Hashimoto, Isaac Veinbergs, Yutaka Sagara, Abbyanne Sisk and Ayako Takeda of the UCSD Department of Neurosciences.

The research was supported by the National Institute on Aging, The J. David Gladstone Institutes and the Spencer Family Foundation.


Story Source:

The above story is based on materials provided by University Of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego. "Scientists Develop Transgenic Mouse That Models Parkinson's, Related Disorders." ScienceDaily. ScienceDaily, 21 February 2000. <www.sciencedaily.com/releases/2000/02/000218054728.htm>.
University Of California, San Diego. (2000, February 21). Scientists Develop Transgenic Mouse That Models Parkinson's, Related Disorders. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2000/02/000218054728.htm
University Of California, San Diego. "Scientists Develop Transgenic Mouse That Models Parkinson's, Related Disorders." ScienceDaily. www.sciencedaily.com/releases/2000/02/000218054728.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins