Featured Research

from universities, journals, and other organizations

'Planet In A Test Tube' Provides Valuable Data On Atmospheres Of Planets And Stars

Date:
February 24, 2000
Source:
NASA Marshall Space Flight Center
Summary:
NASA's "planet in a test tube" experiment has shown that microgravity -- the weightless environment inside an orbiting spacecraft -- helps scientists create more accurate models of planetary atmospheres and oceans. Scientists recently published results from this Space Shuttle experiment in a NASA technical document.

NASA's "planet in a test tube" experiment has shown that microgravity -- the weightless environment inside an orbiting spacecraft -- helps scientists create more accurate models of planetary atmospheres and oceans. Scientists recently published results from this Space Shuttle experiment in a NASA technical document.

Because scientists can't yet travel to other planets, they build models like the "planet in a test tube" to simulate conditions on a planet. These sophisticated models help scientists study fluid movements in Earth's atmosphere and oceans and on other more distant worlds.

NASA's "planet in a test tube" -- the Geophysical Fluid Flow Cell -- was designed by Dr. John Hart, lead investigator for the experiment and a fluid physicist at the University of Colorado in Boulder. The experiment was flown on two Space Shuttle missions -- in 1985 and 1995. During the second mission, the experiment was operated in space by Dr. Fred Leslie, a co-investigator on the experiment and a fluid physicist at NASA's Marshall Space Flight Center in Huntsville, Ala.

"On the ground, it is impossible to create accurate models because Earth's gravity produces unrealistic fluid behavior on the spherical model," said Leslie. "In microgravity, you eliminate Earth's gravity, and can do experiments with artificial gravity to verify mathematical and computer models of fluid flows in planetary atmospheres."

Inside the Geophysical Fluid Flow Cell, scientists created models of Earth's climate and interior, the Sun's atmosphere and the atmospheres of other planets. Detailed results of the Geophysical Fluid Flow Cell experiments are published in NASA Technical Memorandum, NASA-TP-1999-209-576, which is available on the Marshall Technical Reports Web site at: http://mtrs.msfc.nasa.gov/mtrs/

How do you simulate something as big as a planet? The heart of the Geophysical Fluid Flow Cell is a nickel-coated, stainless steel ball about the size of a Christmas ornament. The ball is placed under a synthetic sapphire dome, and silicone oil placed between the two simulates the atmosphere of Jupiter, the Sun or Earth's molten mantle, depending on the experiment conditions selected by scientists. A temperature-controlled turntable spins the dome -- simulating planet rotation -- and an electric charge between the dome and the sphere serves as artificial gravity.

During the Geophysical Fluid Flow Cell's first flight, more than 100 experiments were conducted using the cell to simulate different conditions, and 50,000 images were recorded on 16-mm film.

"We were successful and made several observations of new convection patterns," said Hart. "Some of these are pertinent to our search for explanations of the key features, like zonal winds and jets, of Jupiter's atmospheric structure."

On the first flight, investigators didn't get to see what was happening inside their model until the Space Shuttle brought the film back to Earth. For the second flight, investigators added equipment so they could observe the model and change the parameters to create certain effects. Leslie was a payload specialist on the flight and operated the experiment in space.

"It was great to personally do the experiment," said Leslie. "The first flight was a little like running an experiment in the lab with the lights off. We had no indication how the fluid was responding to the inputs. During the second flight, both I and the scientists on the ground could see how the model changed as we changed parameters like rotation rate or temperature. Then, I could tweak the parameters to make the simulation more realistic."

During the second mission, 29 separate six-hour runs were completed with the Geophysical Fluid Flow Cell. "The influence of weightlessness on experiments was amazing to watch," said Leslie.

Dr. Tim Miller, another co-investigator on the experiment and an atmospheric scientist at NASA's Global Hydrology and Climate Center in Huntsville, developed and used computer models to predict the flows seen in the Geophysical Fluid Flow Cell experiments. He hopes that lessons learned in the study of the fluid flow cell dynamics can be applied toward a better understanding of such topics as the movement of Earth's continents and atmospheric dynamics on Earth and other planets.

His model successfully predicted that final flow patterns for some of the very slowly rotating cases could depend on how the experiment is started. This may be an important point in the discussion of the movement of continents in response to the steady pull of the viscous mantle beneath the continental plates. "There's a lot more science that can be obtained with the data and the models," Miller said.

The Geophysical Fluid Flow Cell experiment is managed by Marshall's Microgravity Research Program Office.

- 30 -

Note to Editors / News Directors: Interviews with Dr. Fred Leslie and Dr. Tim Miller and photos and video supporting this release are available to media representatives by contacting Steve Roy of the Marshall Media Relations Department at (256) 544-0034. For an electronic version of this release, digital images or more information, visit Marshall's News Center on the Web at:

http://www.msfc.nasa.gov/news

Photos supporting this release can be viewed at:

http://www1.msfc.nasa.gov/NEWSROOM/news/photos/2000/photos00-041.htm


Story Source:

The above story is based on materials provided by NASA Marshall Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA Marshall Space Flight Center. "'Planet In A Test Tube' Provides Valuable Data On Atmospheres Of Planets And Stars." ScienceDaily. ScienceDaily, 24 February 2000. <www.sciencedaily.com/releases/2000/02/000223191620.htm>.
NASA Marshall Space Flight Center. (2000, February 24). 'Planet In A Test Tube' Provides Valuable Data On Atmospheres Of Planets And Stars. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2000/02/000223191620.htm
NASA Marshall Space Flight Center. "'Planet In A Test Tube' Provides Valuable Data On Atmospheres Of Planets And Stars." ScienceDaily. www.sciencedaily.com/releases/2000/02/000223191620.htm (accessed July 24, 2014).

Share This




More Space & Time News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins