Featured Research

from universities, journals, and other organizations

New Link Uncovered In Nerve Cell Mechanism Thought To Power Learning And Memory

Date:
March 28, 2000
Source:
Cold Spring Harbor Laboratory
Summary:
Researchers at Cold Spring Harbor Laboratory have uncovered a significant new link in the molecular chain of events thought to underlie learning and memory. By using a novel electrophysiological method for measuring synaptic activity, Roberto Malinow and his colleagues have demonstrated that strengthening of nerve cell connections in the brain -- believed to occur during learning and memory consolidation -- can be largely explained by the movement of proteins called AMPA receptors into synapses.

Cold Spring Harbor, NY -- Researchers at Cold Spring Harbor Laboratory have uncovered a significant new link in the molecular chain of events thought to underlie learning and memory. By using a novel electrophysiological method for measuring synaptic activity, Roberto Malinow and his colleagues have demonstrated that strengthening of nerve cell connections in the brain -- believed to occur during learning and memory consolidation -- can be largely explained by the movement of proteins called AMPA receptors into synapses. The scientists describe the role of two other proteins, one (a protein kinase) known previously to be critical to AMPA receptor-mediated synaptic strengthening, and another (the new link) whose existence is strongly implicated by the recent findings. The study is reported in the March 23 issue of Science.

Related Articles


One seat of learning and memory in the brain is a region deep within the cortex called the hippocampus. Malinow and his colleagues study how neurons in the hippocampus of rats respond to electrical stimulation like that which occurs during learning. In particular, they explore the mechanisms involved in long-term potentiation (LTP ), the synaptic strengthening believed to power learning and memory consolidation.

In one of two studies they published in Science last year, Malinow and his colleagues reported how the distribution of AMPA receptors within dendrites changes upon induction of LTP (dendrites are the branch-like arms of neurons that receive synaptic inputs.) This study demonstrated that during LTP induction, some AMPA receptors move rapidly from interior locations within dendrites into regions that contain synapses called dendritic spines. The increased presence of AMPA receptors on the cell surface at synapses enables neurons to respond more strongly to the key neurotransmitter glutamate. Thus, the scientists concluded that the movement of AMPA receptors into spines could be an important mechanism that contributes to the synaptic strengthening believed to underlie learning and memory. But additional evidence to support this view was needed.

"What we really wanted to know next was whether the AMPA receptors we observed moving into spines are actually incorporated into synapses and participate in synaptic transmission," says Malinow. "And we wanted to learn more about the mechanism that mediates this trafficking of AMPA receptors within dendrites."

The new study provides these answers. Malinow and his colleagues took advantage of the fact that most of the neurons they study contain AMPA receptors with both "GluR1" and "GluR2" subunits. Receptors with these subunits allow sodium (Na+) ions to flow into cells and potassium (K+) ions to flow out of cells. To follow with precision the fate of AMPA receptor subunits, the scientists overexpressed just the GluR1 subunit. AMPA receptors that contain GluR1 but lack GluR2 only allow the inward flow of sodium ions. This property provided Malinow and his colleagues the sensitive electrophysiological assay they needed to determine whether GluR1 AMPA receptor subunits are newly-incorporated into synapses following LTP induction, and if so, whether they are functional (i.e. able to increase synaptic transmission.) The answer on both scores was yes.

In these experiments, LTP was mimicked by co-expressing with GluR1 a constitutively active form of a protein kinase (CaMKII) known to be sufficient to elicit the synaptic strengthening that is the hallmark of LTP. To investigate the mechanistic relationship between AMPA receptors and CaMKII, Malinow and his colleagues mutated a site within GluR1 that had been shown by others to be phosphorylated by CaMKII during LTP. This mutation did not appear to affect the regulated delivery of GluR1 to synapses.

Instead, Malinow and his colleagues identified a different site within GluR1 that they believe is required for the CaMKII-mediated delivery of GluR1 to synapses during LTP. This site attracted the attention of the scientists because it resembles motifs found in other membrane proteins that control where those proteins are localized within cells. The motif enables those membrane proteins to bind to a class of so-called PDZ proteins which act to target the membrane proteins to the correct location in the cell. Malinow and his colleagues showed that mutations within the putative PDZ-interaction motif of GluR1 blocked its delivery to synapses following LTP induction. Therefore, a PDZ protein is likely to represent a new link in the regulated delivery of functional AMPA receptors to synapses during learning and memory consolidation.

The study was carried out at Cold Spring Harbor Laboratory by Yasunori Hayashi, Song-Hai Shi, José A. Esteban, Antonella Piccini, Jean-Christophe Poncer (currently at the Pasteur Institute, Paris), and Malinow. Cold Spring Harbor Laboratory is a private, non-profit basic research and educational institution with programs focusing on cancer, neuroscience, and plant biology. Its other areas of research expertise include molecular and cellular biology, genetics, structural biology, and bioinformatics.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "New Link Uncovered In Nerve Cell Mechanism Thought To Power Learning And Memory." ScienceDaily. ScienceDaily, 28 March 2000. <www.sciencedaily.com/releases/2000/03/000328090224.htm>.
Cold Spring Harbor Laboratory. (2000, March 28). New Link Uncovered In Nerve Cell Mechanism Thought To Power Learning And Memory. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2000/03/000328090224.htm
Cold Spring Harbor Laboratory. "New Link Uncovered In Nerve Cell Mechanism Thought To Power Learning And Memory." ScienceDaily. www.sciencedaily.com/releases/2000/03/000328090224.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) — Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins