Featured Research

from universities, journals, and other organizations

Atomic-Sized Carbon Nanotubes Show Promising Tunable Structure, Electronic Properties

Date:
April 26, 2000
Source:
University Of North Carolina At Chapel Hill
Summary:
Carbon nanotubes -- strong tubular structures formed from a single layer of carbon atoms and only about a billionth of a meter in diameter -- display previously unknown properties with significant technological potential, a new University of North Carolina at Chapel Hill study shows.

Carbon nanotubes -- strong tubular structures formed from a single layer of carbon atoms and only about a billionth of a meter in diameter -- display previously unknown properties with significant technological potential, a new University of North Carolina at Chapel Hill study shows.

Related Articles


University and industrial laboratories around the world have been eagerly investigating such nanotubes for their possible applications, according to UNC-CH physicists Yue Wu and Otto Zhou. Future uses may include flat panel display and telecommunications devices, fuel cells, Li-Ion batteries, high-strength composites and novel molecular electronics.

Part of the interest in the tiny, thread-like cylinders stems from the knowledge that single-walled nanotubes can behave either as metals or as semiconductors, depending on their chirality, the folding direction of the graphene sheet forming them, the scientists said. Before the tubes can be used in electronic equipment, however, industry needs to know how to fabricate materials with controlled structure and properties. New techniques for evaluating such macroscopic materials also are required.

In an article appearing in the current (April 21) issue of the journal Science, a UNC-CH research team reports a major step in that direction. Members work in the university's physics and astronomy department and curriculum in applied and materials sciences.

"We used carbon-13 nuclear magnetic resonance (NMR) to measure the number of current-carrying electrons in single-walled nanotubes and therefore their electronic properties," said Wu, an associate professor. "In a sense you might say we wanted to take the 'pulse' of nanotubes by finding out how the carbon atoms in them feel and behave and thus distinguish the metallic nanotubes from the semiconducting nanotubes."

The NMR group led by Wu also includes Drs. Xiao-Ping Tang and Alfred Kleinhammes, research assistant professors, and undergraduate Kamal Bennoune.

The study involved measuring interactions between the C-13 nuclear spins and the conduction electron spins, he said. Nuclear magnetic resonance is a technique widely employed in science and also in medicine for creating images inside the body.

Physicists found the tubes' unusual properties also can change significantly in response to alterations made in their surroundings, such as exposing them to oxygen or other gases.

"The NMR method we've established could be used for studying various other aspects of carbon nanotubes, including assessing the potential of hydrogen storage," Wu said. "Such study is very important for development of hydrogen fuel cells."

By controlling the conditions under which the carbon nanotubes were synthesized, the materials group at UNC-CH, led by Zhou, fabricated the cylindrical particles with variable diameters.

Zhou, an assistant professor and director of the N.C. Center for Nanoscale Materials, worked with graduate students Leslie Fleming and Chris Bower and postdoctoral fellows Hideo Shimoda and Saion Sinha.

The researchers found that the mass ratios of the metallic and semiconducting tubes were different in the materials. NMR studies showed that a third of the tubes exhibited metallic behavior in samples made with nickel-cobalt catalysts, which was consistent with a random distribution of tube chirality. A much higher fraction of metallic tubes was observed in samples made by rhodium-palladium catalysts.

Results suggest that eventually it may be possible to make either all metallic or all semiconducting carbon nanotubes and with tunable structures, which is essential if the tubes are to be used in electronic devices. The new study was supported by the Office of Naval Research and the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of North Carolina At Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina At Chapel Hill. "Atomic-Sized Carbon Nanotubes Show Promising Tunable Structure, Electronic Properties." ScienceDaily. ScienceDaily, 26 April 2000. <www.sciencedaily.com/releases/2000/04/000426075629.htm>.
University Of North Carolina At Chapel Hill. (2000, April 26). Atomic-Sized Carbon Nanotubes Show Promising Tunable Structure, Electronic Properties. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2000/04/000426075629.htm
University Of North Carolina At Chapel Hill. "Atomic-Sized Carbon Nanotubes Show Promising Tunable Structure, Electronic Properties." ScienceDaily. www.sciencedaily.com/releases/2000/04/000426075629.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com
Tackling Congestion in the World's Worst Traffic City

Tackling Congestion in the World's Worst Traffic City

Reuters - News Video Online (Apr. 16, 2015) New transportation system and regulations aim to resolve gridlock in Jakarta, which has been named the city with the world&apos;s worst traffic. Angie Teo reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins