Featured Research

from universities, journals, and other organizations

Scientists Catch "Molecular Snapshot" Of COX-2 In Action

Date:
May 4, 2000
Source:
Vanderbilt University Medical Center
Summary:
A team of Vanderbilt University biochemists and pharmaceutical industry researchers have caught a "molecular snapshot" of the first step in an important biochemical reaction involved in pain, inflammation and even cancer.

A team of Vanderbilt University biochemists and pharmaceutical industry researchers have caught a "molecular snapshot" of the first step in an important biochemical reaction involved in pain, inflammation and even cancer.

The findings by the team from Vanderbilt and Searle/Monsanto Company are described in the May 4 issue of the journal Nature. Their work provides insights that may help guide future drug development.

Using a technology called X-ray crystallography, the researchers determined the three-dimensional structure of the enzyme cyclooxygenase-2 (COX-2) with arachidonic acid -- its "substrate," or the starting material for the reaction -- bound to it. This binding is the first step in a series of chemical reactions that result in production of a number of hormone-like prostaglandins that contribute to pain and inflammation. Elevated levels of COX-2 have also been linked to tumor development; and tumor growth has, in turn, been blocked in the laboratory with agents that block COX-2's action.

"This results from a long line of research to understand how COX-2 interacts with its substrates and inhibitors," said Lawrence J. Marnett, Ph.D., Mary Geddes Stahlman Professor of Cancer Research, Professor of Biochemistry, and Associate Director of Basic Research Programs for the Vanderbilt-Ingram Cancer Center. "It helps us to understand in very specific terms how arachidonic acid is bound on the enzyme. This kind of information helps in identifying and developing new inhibitors."

Until now, work to develop drugs that inhibit the action of COX-2 has been based on scientifically grounded hypotheses about how arachidonic acid fits into the enzyme. But no one knew for certain where it bound onto COX-2 and the precise shape of the "pocket" into which it fits. The goal would be to use this information to design drug molecules that more precisely mimic that fit. The "snapshot" also caught the initial product of the reaction, prostaglandin G2, still bound to the enzyme in exactly the way that the scientists expected based on earlier experiments. In the COX-2 reaction, this product would then detach from the enzyme to be picked up by another enzyme in the pathway to prostaglandin synthesis.

There are two forms of cyclooxygenase: COX-1, present all the time in the stomach, whose prostaglandin products are responsible for protecting the stomach lining from irritation; and COX-2, produced in response to stimuli, whose prostaglandin products result in pain and inflammation.

Aspirin and non-steroidal inflammatory drugs (NSAIDs) target both enzymes, resulting in relief from pain and inflammation but also causing stomach upset and even ulcers. Recently developed drugs like celecoxib target only COX-2 but leave COX-1 alone, providing relief with fewer gastric side effects. They are also being tested for their potential to prevent colorectal cancer.

These drugs bind at the same site on COX-2 where the arachidonic acid is bound in the snapshot, Marnett said, although they do not fit the "pocket" in precisely the same way.

Marnett and his colleagues have developed another COX-2 selective molecule, called APHS, that differs from other COX-2 inhibitors in that it permanently inactivates COX-2 like aspirin does. The other COX-2 inhibitors and NSAIDs only temporarily block its action. Marnett noted that their research suggests APHS binds instead in the same pocket where prostaglandin PG2 was attached to COX-2. "So there's something inside that pocket that appears to be important for the COX-2 selectivity of APHS," Marnett said.

In addition to Marnett, collaborators in the Nature article include James Kiefer, Jennifer Pawlitz, Kirby Moreland, Roderick Stegeman, William Hood, James Gierse, Anna Stevens, Williams Stallings and Ravi Kurumball of Searle Discovery Research, Monsanto Company; and Douglas Goodwin and Scott Rowlinson of Vanderbilt's Department of Biochemistry.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Scientists Catch "Molecular Snapshot" Of COX-2 In Action." ScienceDaily. ScienceDaily, 4 May 2000. <www.sciencedaily.com/releases/2000/05/000503181750.htm>.
Vanderbilt University Medical Center. (2000, May 4). Scientists Catch "Molecular Snapshot" Of COX-2 In Action. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2000/05/000503181750.htm
Vanderbilt University Medical Center. "Scientists Catch "Molecular Snapshot" Of COX-2 In Action." ScienceDaily. www.sciencedaily.com/releases/2000/05/000503181750.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Ebola Patient Told Hospital He Was from Liberia

Ebola Patient Told Hospital He Was from Liberia

AP (Oct. 1, 2014) The first Ebola patient diagnosed in the U.S. initially went to a Dallas emergency room last week but was sent home, despite telling a nurse that he had been in disease-ravaged West Africa, the hospital acknowledged Wednesday. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins