Featured Research

from universities, journals, and other organizations

Scientists Catch "Molecular Snapshot" Of COX-2 In Action

Date:
May 4, 2000
Source:
Vanderbilt University Medical Center
Summary:
A team of Vanderbilt University biochemists and pharmaceutical industry researchers have caught a "molecular snapshot" of the first step in an important biochemical reaction involved in pain, inflammation and even cancer.

A team of Vanderbilt University biochemists and pharmaceutical industry researchers have caught a "molecular snapshot" of the first step in an important biochemical reaction involved in pain, inflammation and even cancer.

The findings by the team from Vanderbilt and Searle/Monsanto Company are described in the May 4 issue of the journal Nature. Their work provides insights that may help guide future drug development.

Using a technology called X-ray crystallography, the researchers determined the three-dimensional structure of the enzyme cyclooxygenase-2 (COX-2) with arachidonic acid -- its "substrate," or the starting material for the reaction -- bound to it. This binding is the first step in a series of chemical reactions that result in production of a number of hormone-like prostaglandins that contribute to pain and inflammation. Elevated levels of COX-2 have also been linked to tumor development; and tumor growth has, in turn, been blocked in the laboratory with agents that block COX-2's action.

"This results from a long line of research to understand how COX-2 interacts with its substrates and inhibitors," said Lawrence J. Marnett, Ph.D., Mary Geddes Stahlman Professor of Cancer Research, Professor of Biochemistry, and Associate Director of Basic Research Programs for the Vanderbilt-Ingram Cancer Center. "It helps us to understand in very specific terms how arachidonic acid is bound on the enzyme. This kind of information helps in identifying and developing new inhibitors."

Until now, work to develop drugs that inhibit the action of COX-2 has been based on scientifically grounded hypotheses about how arachidonic acid fits into the enzyme. But no one knew for certain where it bound onto COX-2 and the precise shape of the "pocket" into which it fits. The goal would be to use this information to design drug molecules that more precisely mimic that fit. The "snapshot" also caught the initial product of the reaction, prostaglandin G2, still bound to the enzyme in exactly the way that the scientists expected based on earlier experiments. In the COX-2 reaction, this product would then detach from the enzyme to be picked up by another enzyme in the pathway to prostaglandin synthesis.

There are two forms of cyclooxygenase: COX-1, present all the time in the stomach, whose prostaglandin products are responsible for protecting the stomach lining from irritation; and COX-2, produced in response to stimuli, whose prostaglandin products result in pain and inflammation.

Aspirin and non-steroidal inflammatory drugs (NSAIDs) target both enzymes, resulting in relief from pain and inflammation but also causing stomach upset and even ulcers. Recently developed drugs like celecoxib target only COX-2 but leave COX-1 alone, providing relief with fewer gastric side effects. They are also being tested for their potential to prevent colorectal cancer.

These drugs bind at the same site on COX-2 where the arachidonic acid is bound in the snapshot, Marnett said, although they do not fit the "pocket" in precisely the same way.

Marnett and his colleagues have developed another COX-2 selective molecule, called APHS, that differs from other COX-2 inhibitors in that it permanently inactivates COX-2 like aspirin does. The other COX-2 inhibitors and NSAIDs only temporarily block its action. Marnett noted that their research suggests APHS binds instead in the same pocket where prostaglandin PG2 was attached to COX-2. "So there's something inside that pocket that appears to be important for the COX-2 selectivity of APHS," Marnett said.

In addition to Marnett, collaborators in the Nature article include James Kiefer, Jennifer Pawlitz, Kirby Moreland, Roderick Stegeman, William Hood, James Gierse, Anna Stevens, Williams Stallings and Ravi Kurumball of Searle Discovery Research, Monsanto Company; and Douglas Goodwin and Scott Rowlinson of Vanderbilt's Department of Biochemistry.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Scientists Catch "Molecular Snapshot" Of COX-2 In Action." ScienceDaily. ScienceDaily, 4 May 2000. <www.sciencedaily.com/releases/2000/05/000503181750.htm>.
Vanderbilt University Medical Center. (2000, May 4). Scientists Catch "Molecular Snapshot" Of COX-2 In Action. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2000/05/000503181750.htm
Vanderbilt University Medical Center. "Scientists Catch "Molecular Snapshot" Of COX-2 In Action." ScienceDaily. www.sciencedaily.com/releases/2000/05/000503181750.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins