Featured Research

from universities, journals, and other organizations

K-State Chemist Publishes New Article On High Tech Sample Analysis

Date:
May 15, 2000
Source:
Kansas State University
Summary:
New instrumentation makes it possible to analyze the localized chemical content of extremely small specimens -- single cells, single fibers, single crystals, and botanical parts. The technical advance eliminated the need to grind up a sample or stain it. Instead, slicing it "thin enough" -- to 1/10th the thickness of a human hair -- is all that's needed to probe its chemistry.

MANHATTAN -- An article in the most recent issue of Chemistry and Industry magazine describes a powerful technique for analyzing a wide variety of samples without destroying them in the process. Authors of the article, Kansas State University chemist David Wetzel and John A. Reffner, technical director at SensIR in Danbury, Conn., are leaders in the field of infrared microspectroscopy.

The invited article by the two scientists, "More information from less sample," describes how the new technique helped solve the bombing of the World Trade Center, using only fragments of debris collected at the scene. Infrared microspectroscopy combines a special infrared microscope, infrared spectrometer and computer. This instrumentation makes it possible to analyze the localized chemical content of extremely small specimen -- single cells, single fibers, single crystals, and botanical parts. The technical advance eliminated the need to grind up a sample or stain it. Instead, slicing it "thin enough" -- to 1/10th the thickness of a human hair -- is all that's needed to probe its chemistry.

Select wavelengths of infrared radiation that strike the target sample are either absorbed or transmitted by the molecules, thus providing a chemical signature. That infrared signature tells an analyst what's present and how much. Being able to achieve spatial resolution has been a long-time goal of scientists, and the microscope pinpoints the target of only a few microns. By analyzing a sample in a grid pattern, a map of localized chemistry of the molecules is developed that can be superimposed over the visible physical microstructure under study.

This rapidly emerging technology has increasing applications for biological and other research. The tiniest particle can be analyzed -- a paint chip from a hit and run case to a single red blood cell to study rare blood disorders.

"Even a single cell in the cross-section of a wheat kernel, surrounded by cell walls and tissue, can be isolated with image masks and its unique infrared absorption spectra recorded for analysis," the authors say.

Wetzel has worked at the cutting edge of this technology since the modern infrared microscope was developed and patented in 1989. Almost immediately, Wetzel carried sectioned wheat samples to the inventor's labs for analysis on the new instruments, thus becoming one of the first researchers in the world to test its capability for analyzing biological materials.

The quality of the data from those first wheat experiments became the basis for a scientific presentation, and subsequent scientific publication.

According to Wetzel, inside a wheat kernel or other tissues, there are localized miniature biochemical factories with raw material, intermediate material and end products. "With an infrared microspectrometer, we could begin to see how each factory is working, and analyze it on the spot," he explained.

For more information contact David Wetzel at K-State's department of grain science and industry, Microbeam Molecular Spectroscopy Lab, department of grain science and industry Microbeam Molecular, at 785-532-4094 (office), 785-539-2509 (home) or e-mail Dwetzel@ksu.edu; or at SensIR Technologies, 203-207-9700.


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Cite This Page:

Kansas State University. "K-State Chemist Publishes New Article On High Tech Sample Analysis." ScienceDaily. ScienceDaily, 15 May 2000. <www.sciencedaily.com/releases/2000/05/000510111244.htm>.
Kansas State University. (2000, May 15). K-State Chemist Publishes New Article On High Tech Sample Analysis. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2000/05/000510111244.htm
Kansas State University. "K-State Chemist Publishes New Article On High Tech Sample Analysis." ScienceDaily. www.sciencedaily.com/releases/2000/05/000510111244.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins