Featured Research

from universities, journals, and other organizations

Purdue "Stealth Compounds" Attack Cancer Cells

Date:
May 18, 2000
Source:
Purdue University
Summary:
Imagine ordering a part to repair your car, and having the new part delivered in pieces you must first assemble. A similar situation often occurs in treating cancer, because the components needed to put the brakes on the cells' abnormal growth can be readily delivered through the cell membrane only in pieces that then must be assembled by the cell.

WEST LAFAYETTE, Ind. -- Imagine ordering a part to repair your car, and having the new part delivered in pieces you must first assemble.

Related Articles


A similar situation often occurs in treating cancer, because the components needed to put the brakes on the cells' abnormal growth can be readily delivered through the cell membrane only in pieces that then must be assembled by the cell.

Scientists at Purdue University have developed a method for getting these compounds, called nucleotides, into tumor cells -- already assembled.

The method may lead to the development of new, more powerful treatments that have fewer side effects and are less likely to produce drug resistance in patients being treated for cancer and certain viruses such as HIV, says Richard Borch, principal investigator of the study who is the Lilly Distinguished Professor of Medicinal Chemistry and Molecular Pharmacology at Purdue.

"Potentially this system will work for all types of cancer, and it may prove useful in treating cancers that have been resistant to other treatments, such as pancreatic cancer," Borch says.

Nucleotides, which act as building blocks for the molecules that make up DNA and RNA, also carry out several essential functions needed for cell replication. By delivering specific forms of nucleotides to a cell, scientists can throw a chemical wrench into the cell's machinery to block the replication of viruses and cancer cells.

"Nucleotides can be used in a number of ways to inhibit a specific critical pathway that a cell requires to proliferate," Borch says. "The problem was, we couldn't deliver nucleotides directly into a cell because they carry a negative charge that prevents them from crossing the cell's membrane."

Many current therapies instead deliver precursor compounds that the cell then uses to "build" nucleotides.

Borch and his group have developed a way to hide the negative charge, creating a "stealth compound" with specially designed nucleotides that can cross the cell membrane undetected. The method works by adding another chemical component to the charged phosphate of the nucleotide. Once the compound enters a cell, enzymes break it apart, releasing the nucleotides into the cell.

Because the enzymes needed to break the compound apart are found only in cancer cells, the new method may allow researchers to develop drug therapies with fewer side effects, Borch says.

"Though a stealth compound is capable of entering normal cells, without the particular enzymes needed to break it down, the compound cannot release its nucleotides and should have little effect on the cell's ability to function," he says.

The method, described in detail at the recent American Association for Cancer Research meeting in San Francisco, will allow scientists to build on many current treatments that now require a time-consuming process to form nucleotides from precursor compounds, called nucleosides.

"The problem with using nucleosides is that viruses and cancers get 'smart' and quit carrying out the conversion necessary to develop the nucleotides," Borch says. "When this happens, the patient will develop resistance."

So far, the new method has been tested using an established bioassay and a mechanism-based assay developed by Borch and his research group at Purdue's Cancer Center. The researchers now plan to conduct animal studies using anti-cancer compounds developed at the center.

Though pharmaceutical companies currently have several technologies available for carrying nucleotides into cells, those existing methods fall short in several ways, Borch says.

"With current technologies, the activation process takes place in the bloodstream, rather than inside the cell. This means that you lose a lot of the drug, making it difficult to deliver adequate amounts of the drug to the cell," he says.

"Also, the activation process is very slow. The use of these nucleotides requires a two-step process, and the existing technologies are so slow that the cell can't accumulate much nucleotide because it is breaking down the components almost as quickly as it processes them."

Borch says his group's new method has the advantage that there is no premature breakdown in the bloodstream, and it carries out the process very quickly.

Purdue has filed for a patent on the new technology.

Borch says he already has been contacted by several pharmaceutical companies interested in the new method.

"Companies are interested in the new technology because they already have potential compounds that could be delivered with this system," he says.

Borch's studies at Purdue are supported by the National Cancer Institute.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Purdue "Stealth Compounds" Attack Cancer Cells." ScienceDaily. ScienceDaily, 18 May 2000. <www.sciencedaily.com/releases/2000/05/000515090004.htm>.
Purdue University. (2000, May 18). Purdue "Stealth Compounds" Attack Cancer Cells. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2000/05/000515090004.htm
Purdue University. "Purdue "Stealth Compounds" Attack Cancer Cells." ScienceDaily. www.sciencedaily.com/releases/2000/05/000515090004.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Fauci Says Ebola Risk in US "essentially Zero"

Fauci Says Ebola Risk in US "essentially Zero"

AP (Oct. 30, 2014) NIAID Director Anthony Fauci said the risk of Ebola becoming an epidemic in the U.S. is essentially zero Thursday at the Washington Ideas Forum. He also said an Ebola vaccine will be tested in West Africa in the next few months. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Nurse Defies Ebola Quarantine With Bike Ride

Nurse Defies Ebola Quarantine With Bike Ride

AP (Oct. 30, 2014) A nurse who vowed to defy Maine's voluntary quarantine for health care workers who treated Ebola patients followed through on her promise Thursday, leaving her home for an hour-long bike ride. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Pot-Infused Edibles Raise Concerns in Colorado

Pot-Infused Edibles Raise Concerns in Colorado

AFP (Oct. 30, 2014) Colorado may have legalized marijuana for recreational use, but the debate around the decision still continues, with a recent - failed - attempt to ban cannabis-infused edibles. Duration: 01:53 Video provided by AFP
Powered by NewsLook.com
British Navy Ship Arrives in Sierra Leone With Ebola Aid

British Navy Ship Arrives in Sierra Leone With Ebola Aid

AFP (Oct. 30, 2014) The British ship RFA ARGUS arrived in Sierra Leone to deliver supplies and equipment to help the fight against Ebola. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins