Featured Research

from universities, journals, and other organizations

Bone Produced From Skin And Gum Tissue Could Simplify Grafting

Date:
May 22, 2000
Source:
University Of Michigan
Summary:
Using engineered skin and gingiva (gum tissue) cells, researchers at the University of Michigan School of Dentistry have produced complete bones with the same hard outer coating, spongy interior and marrow core as naturally produced bone.

ANN ARBOR --- Using engineered skin and gingiva (gum tissue) cells, researchers at the University of Michigan School of Dentistry have produced complete bones with the same hard outer coating, spongy interior and marrow core as naturally produced bone. The researchers used the method to replace large areas of missing bone in living rats, raising the prospect of simpler, less painful bone grafts in human patients.

Related Articles


The experiments, published in the May 20 issue of Human Gene Therapy, also had a surprising result: the engineered cells not only delivered the bone-forming proteins they were designed to secrete, but they also participated directly in bone formation.

Current bone grafting methods involve harvesting a patient's bone marrow with a long needle or surgically removing a piece of bone, typically from the hip. With the new method, which is still in developmental stages, a tiny bit of skin or gum tissue is removed, cut into even smaller pieces, and placed in a culture dish. The cultured cells are then engineered to secrete BMP-7, a protein that induces bone formation. The engineered cells are seeded onto collagen sponges, which are placed in the area where bone repair is needed.

The research team---which included Bruce Rutherford, professor; Paul Krebsbach, assistant professor; Keni Gu, research investigator; and Renny Franceschi, associate professor---tested the system on rats that had large sections of bone missing from their skulls. New bone was produced from the rats' own skin cells, and the skulls were almost fully healed within just four weeks, "which was startling to me," says Rutherford.

The new bone looks just like naturally produced bone, and the researchers plan more experiments to find out whether it functions like natural bone. They also are experimenting with using a hydrogel---a material that changes from liquid to gel under certain conditions---instead of the collagen sponges. The particular hydrogel they use acts like "reverse Jell-O," remaining liquid when cool and firming up when warm, says Rutherford. Injected as liquid into a lesion of any size or shape, the material gels as it warms to body temperature, holding the engineered cells in the appropriate place.

In another set of experiments reported in the paper, the researchers implanted engineered human gingival cells into a strain of mouse that has no immune system and therefore does not reject foreign tissue. To their surprise, the new bone that formed in the mice was composed of both mouse and human tissue. "This suggests that the gingival cells were not just delivering BMP-7, but also responding to the protein and making bone themselves," says Rutherford.

Using a patient's own cells from easily accessed tissues that heal quickly is a major step toward an alternative to conventional bone grafts, Rutherford says. "If the implanted cells form bone directly, in addition to secreting BMP-7, these autografts would be useful in regenerating bone in the many cases where few cells capable of forming new bone remain in the injured bone. Such lesions are difficult to treat by conventional treatment."

The research was funded by the National Institute of Dental and Craniofacial Research.

The U-M School of Dentistry is one of the nation's leading dental schools engaged in oral health care education, research, patient care and community service. General dental care clinics and specialty clinics providing advanced treatment enable the School to offer dental services and programs to patients throughout Michigan. Classroom and clinic instruction train future dentists, dental specialists and dental hygienists for practice in private offices, hospitals, academia and public agencies. Research seeks to discover and apply new knowledge that can help patients worldwide. More information is available on the Web at http://www.dent.umich.edu.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "Bone Produced From Skin And Gum Tissue Could Simplify Grafting." ScienceDaily. ScienceDaily, 22 May 2000. <www.sciencedaily.com/releases/2000/05/000519161832.htm>.
University Of Michigan. (2000, May 22). Bone Produced From Skin And Gum Tissue Could Simplify Grafting. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2000/05/000519161832.htm
University Of Michigan. "Bone Produced From Skin And Gum Tissue Could Simplify Grafting." ScienceDaily. www.sciencedaily.com/releases/2000/05/000519161832.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hikers Rescued After Fall from Oregon Mountain

Hikers Rescued After Fall from Oregon Mountain

AP (Feb. 1, 2015) Two climbers who were hurt in a fall on Mount Hood are now being treated for their injuries. Rescue officials say they were airlifted off the mountain Saturday afternoon by an Oregon National Guard helicopter. (Feb. 2) Video provided by AP
Powered by NewsLook.com
Smart Glasses Augment Reality to Help Visually Impaired

Smart Glasses Augment Reality to Help Visually Impaired

Reuters - Innovations Video Online (Feb. 1, 2015) New augmented reality smart glasses developed by researchers at Oxford University can help people with visual impairments improve their vision by providing depth-based feedback, allowing users to "see" better. Joel Flynn reports. Video provided by Reuters
Powered by NewsLook.com
Flu Season Hitting Elderly Hard

Flu Season Hitting Elderly Hard

Reuters - US Online Video (Jan. 31, 2015) The CDC says this year&apos;s flu season is hitting people 65 years of age and older especially hard. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins