Featured Research

from universities, journals, and other organizations

Desktop Biofactories? New Microrobots Might Manipulate Single Cells, Science Authors Report

Date:
June 30, 2000
Source:
American Association For The Advancement Of Science
Summary:
Tiny, submersible robots may suggest a single-cell retrieval system, desktop biofactories, or even tools for minimally invasive surgery, according to a 30 June report in the international journal, Science.

Tiny, submersible robots may suggest a single-cell retrieval system, desktop biofactories, or even tools for minimally invasive surgery, according to a 30 June report in the international journal, Science.

At 670 micrometers tall and 170 to 240 micrometers wide, the new microrobots are shorter than this hyphen--and no wider than the following period. Unlike many previous designs, the Swedish-made microrobots can function in salty broths, blood, urine, cell-culture medium and other liquids, suggesting a host of biotechnology uses.

"Being able to manipulate many individual cells at the same time is becoming increasingly important for genomics, proteomics, and metabolic research," says Edwin W.H. Jager, a graduate student at Sweden's Linköpings Universitet and lead author of the Science paper. "We think that these microrobots would be helpful for fundamental studies, or for manufacturing other small devices, especially if we set up arrays of them."

The robot's miniature hand might someday pluck single cells, bacteria, multi-cellular organisms and other biological entities from a sample, then transfer them to an analysis station. Coupled with a multisensor area, the microrobots also may suggest lab-on-a-chip designs, or "factory-on-a-desk" tools, programmed to assemble various microstructures, say coauthors Olle Inganäs and Ingemar Lundström, faculty members at Linköpings Universitet. Positioned at the end of a catheter, the polymer-and-gold microrobots might increase the range of surgeons, too.

How do the microrobots work? Imagine a human hand, opening and closing. Similarly, conducting polymers such as polypyrrole can be forced to shrink and swell on command. The researchers combine layers of gold and polypyrrole, then use electricity to manipulate contractions of the polymer.

To make the microrobot grab a glass bead, for instance, researchers plump up the polymer by drawing positively charged ions, called cations, away from an electrolyte solution and into the material. Shrinking the polymer is as easy as applying a positive charge to the gold, which oxidizes the polypyrrole and causes cations to flee.

Previous microrobots have included electronic devices featuring rods and levers, artificial flying insects made of polysilicon, and a walking silicon microrobot. But, "none of these operate in water, and would not be suitable as microactuators for the manipulation of cells," Jager notes. Whenever pure silicon is exposed, he explains, it oxidizes and stops working. In the new design, silicon provides a skeletal framework, which is encased and protected by gold and polypyrrole "micromuscles."

The Swedish team's invention was etched into part of a four-inch silicon wafer, which allowed them to create separate gold-and-polypyrrole electrodes for each joint in a robotic arm. From one-fourth of a single wafer, they created 140 microrobots with an elbow, a wrist, a hand, and two to four fingers.

The team used photolithography to pattern the titanium-coated silicon. Next, using a patterned chromium layer as a kind of glue, they added a thin layer of gold to the template. More etching defined individual electrodes on the silicon. This step was followed by a rigid material called BCB (Benzocyclobutene, or Cyclotene), which provided a framework for the electrodes. Finally, the polypyrrole was deposited over the gold. After a final etching step, the robots were released and ready for action.

Submerged in an electrolyte solution, several robots were wired to an electrical source and videotaped as they as hoisted a glass bead. Much like puppeteers pulling one string or another, the researchers stimulated the microrobots' fingers, wrists and elbows by applying a charge to specific joints. To open and close the microrobots' hand, for example, they successively applied positive and negative potentials.

The microrobots successfully moved a bead up to 250 micrometers. They also hoisted beads 270 micrometers, from one miniature conveyor belt or "track" to another, proving their potential as tiny factory workers. Treated with adhesion molecules, the robot's fingers might select particular cells or bacteria from a sample, or they might support surgical procedures. In addition, the Science authors say, an array of microrobots could simultaneously handle many cells.

###

Research described in the Science paper was supported by the Swedish Foundation for Strategic Research and the Swedish Research Council for Engineering Sciences.


Story Source:

The above story is based on materials provided by American Association For The Advancement Of Science. Note: Materials may be edited for content and length.


Cite This Page:

American Association For The Advancement Of Science. "Desktop Biofactories? New Microrobots Might Manipulate Single Cells, Science Authors Report." ScienceDaily. ScienceDaily, 30 June 2000. <www.sciencedaily.com/releases/2000/06/000630093526.htm>.
American Association For The Advancement Of Science. (2000, June 30). Desktop Biofactories? New Microrobots Might Manipulate Single Cells, Science Authors Report. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2000/06/000630093526.htm
American Association For The Advancement Of Science. "Desktop Biofactories? New Microrobots Might Manipulate Single Cells, Science Authors Report." ScienceDaily. www.sciencedaily.com/releases/2000/06/000630093526.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins