Featured Research

from universities, journals, and other organizations

Scientists Find Molecular Switch That Inhibits Fat Cell Development

Date:
August 11, 2000
Source:
University Of Michigan
Summary:
Scientists at the University of Michigan Medical School have discovered a molecular switch that controls the formation of fat cells in mice. If the switch is on, fat cells will not develop. Switch it off, and even would-be muscle cells turn to fat.

ANN ARBOR --- Scientists at the University of Michigan Medical School have discovered a molecular switch that controls the formation of fat cells in mice. If the switch is on, fat cells will not develop. Switch it off, and even would-be muscle cells turn to fat.

This powerful molecular switch is one of several related proteins called Wnts (pronounced "wints"), which exist in all types of animals. Wnts regulate the complex genetic and biochemical changes that take place during embryological development.

Development begins with a ball of generic stem cells capable of becoming any type of cell. Stem cells become precursor cells, which can change into a limited number of cell types. By the end of the developmental stage, cells are committed to just one cellular future.

Scientists knew that Wnt proteins were involved in early cell development, but the U-M study is the first to identify the importance of Wnts in fat cell formation. "We found that Wnt signaling represses adipogenesis or fat cell development," says Sarah E. Ross, a U-M graduate student and first author of the study published in the Aug. 11 issue of Science.

"This is just the first piece of the puzzle, but it is an important one," says Ormond A. MacDougald, Ph.D., who directed the study. MacDougald is an assistant professor of physiology in the U-M Medical School and a member of the U-M Center for Organogenesis. "Understanding this developmental pathway could help scientists learn how and why obesity develops."

MacDougald and his research team worked with two types of mouse cells---precursor muscle cells called myoblasts and precursor fat cells called preadipocytes. "In the absence of Wnt, both cell types consistently differentiated into fat cells," Ross says.

When Wnt protein binds to a cell membrane receptor, it sets off a chain of biochemical signals, according to Ross. Signals are passed from one messenger molecule to another until they reach the cell nucleus where they either turn on or turn off genes that regulate development.

Ross demonstrated Wnt's power to control cell differentiation by blocking proteins in this signaling pathway to interrupt the Wnt signal. After just a few days, myoblasts already on their way to differentiating into muscle cells spontaneously switched gears and became fat cells instead.

"This suggests that active Wnt signaling is required for continued commitment to the myocyte lineage," says MacDougald.

Other significant results documented in the Science article include:

--Of 18 known proteins in the Wnt family, Wnt 10b is the one most likely responsible for regulating adipogenesis.

--Wnt appears to repress fat cell development by inhibiting production of two transcription factor proteins, C/EBPalpha and PPARgamma.

--Preadipocytes were injected beneath the skin of laboratory mice and allowed to grow for seven weeks into a small pad of tissue. Tissue grown from Wnt-free cells contained adipocytes, while tissue from cells expressing Wnt remained undifferentiated.

In future research, MacDougald will study whether Wnt 10b has the same fat cell-inhibiting effect in living mice as it does in mouse cell cultures. "We plan to use genetic engineering to direct expression of Wnt 10b to the developing adipocyte," says MacDougald. "Our goal is to create a fat-free mouse."

Other U-M collaborators in the study included Nahid Hemati, research associate; Kenneth A. Longo, Ph.D., postdoctoral fellow; Christina Bennett and Robin Erickson, graduate students; and Peter C. Lucas, M.D., Ph.D., resident in pathology. The study was funded by the National Institutes of Health, the Natural Sciences and Engineering Research Council of Canada, and the U-M.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "Scientists Find Molecular Switch That Inhibits Fat Cell Development." ScienceDaily. ScienceDaily, 11 August 2000. <www.sciencedaily.com/releases/2000/08/000810134939.htm>.
University Of Michigan. (2000, August 11). Scientists Find Molecular Switch That Inhibits Fat Cell Development. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2000/08/000810134939.htm
University Of Michigan. "Scientists Find Molecular Switch That Inhibits Fat Cell Development." ScienceDaily. www.sciencedaily.com/releases/2000/08/000810134939.htm (accessed August 31, 2014).

Share This




More Health & Medicine News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins