Featured Research

from universities, journals, and other organizations

"Decoy" Cells Attract, Disarm Viruses Before Infection Occurs

Date:
August 24, 2000
Source:
American Chemical Society
Summary:
Decoy cells that act like “molecular flypaper” can attract and disarm viruses that cause disease, researchers reported at the 220th national meeting of the American Chemical Society.

Tiny molecules act like 'flypaper'

Related Articles


WASHINGTON, Aug. 22 — Decoy cells that act like “molecular flypaper” can attract and disarm viruses that cause disease, researchers reported today at the 220th national meeting of the American Chemical Society, the world's largest scientific society.

The fake cells or “nanodecoys” bind to viruses with sialic acid receptors. Sialic acid is the virus-binding target found on the surface of most cells, explains Roseita Esfand, Ph.D., a research fellow at the Center for Biologic Technology at the University of Michigan. The nanodecoys bind the viruses, making them unable to infect actual cells.

Nanodecoys could be deployed inside the body as a drug or used on mucosal surfaces to defend against biological warfare agents, Esfand says.

The decoy approach combats the virus before infection occurs, says Donald Tomalia, Ph.D., scientific director of the Center for Biologic Technology, giving it a theoretical advantage over other treatments that are administered after the virus enters cells.

A barrier in nanodecoy design has been finding a non-toxic polymer to which the sialic acid receptors could be attached. Tomalia's research group is using dendritic polymers — large, branched molecules. They vary in size from generation to generation, which affects the activity of the decoy. With each generation, a growth layer is added and the amount of branching increases.

The nanodecoys successfully inhibited one influenza virus from infecting cells in laboratory testing, according to Esfand. They are now being tested in mice.

“We hope that in the near future we will be able to use this strategy for more complex systems,” Esfand says. “Instead of targeting the virus, we will be targeting cell specific receptors as a strategy to deliver therapy directly to a diseased site.”

The paper on this research, IEC 118, will be presented at 11:30 a.m., Tuesday, Aug. 22, in the Renaissance Washington Hotel, Room 16.

James Baker, M.D., is the director; Roseita Esfand, Ph.D., is a research fellow; Lars Piehler, Ph.D., is a research associate; and Donald Tomalia, Ph.D., is the scientific director of the Center for Biologic Nanotechnology at the University of Michigan Medical School in Ann Arbor, Mich.

A nonprofit organization with a membership of 161,000 chemists and chemical engineers, the American Chemical Society publishes scientific journals and databases, convenes major research conferences, and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. ""Decoy" Cells Attract, Disarm Viruses Before Infection Occurs." ScienceDaily. ScienceDaily, 24 August 2000. <www.sciencedaily.com/releases/2000/08/000824081306.htm>.
American Chemical Society. (2000, August 24). "Decoy" Cells Attract, Disarm Viruses Before Infection Occurs. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2000/08/000824081306.htm
American Chemical Society. ""Decoy" Cells Attract, Disarm Viruses Before Infection Occurs." ScienceDaily. www.sciencedaily.com/releases/2000/08/000824081306.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Ebola Lockdown

Sierra Leone in Ebola Lockdown

Reuters - News Video Online (Mar. 27, 2015) Millions of people in Sierra Leone are urged to stay at home in a three-day lockdown to help end the country&apos;s Ebola outbreak. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins