Featured Research

from universities, journals, and other organizations

Study Uses Blood Cells To Restore Blood Flow To Damaged Tissue In Mice With Diabetes

Date:
August 31, 2000
Source:
University Of Iowa
Summary:
University of Iowa researchers have found a way to improve circulation in the limbs of mice with diabetes. The findings have implications for the treatment of diabetes in humans. Poor circulation is the cause of many dangerous health problems in people with diabetes.

IOWA CITY, Iowa -- University of Iowa researchers have found a way to improve circulation in the limbs of mice with diabetes. The findings have implications for the treatment of diabetes in humans. Poor circulation is the cause of many dangerous health problems in people with diabetes.

The research team led by Gina C. Schatteman, Ph.D., a research scientist in the UI Department of Anatomy and Cell Biology, discovered that injecting certain types of blood cells into the circulation-deficient limbs of mice with diabetes accelerated the restoration of blood flow to the limbs. The results were published in the Aug. 15 issue of the Journal of Clinical Investigation.

The UI study showed that a critical subset of blood cells, called angioblasts, taken from non-diabetic humans, helps to form new blood vessels in diabetic mice, and the rate of restoration of blood flow was faster than for untreated mice.

In humans, restoring blood flow to damaged tissue, generally a slow process, is made even slower by diabetes. People with diabetes do not grow new blood vessels in their limbs as well as people without the disease. The length of time it takes for a patient with diabetes to grow new blood vessels to replace damaged ones is a real problem; during this time the patient is in severe pain and at an increased risk of infection and gangrene, which can lead to amputation.

"The faster good blood flow can be restored to the limb, the faster you can alleviate pain and the more you can reduce the risk of the complications that arise from poor circulation," Schatteman said.

People with diabetes are also particularly susceptible to atherosclerosis (clogging of the arteries). The constricted blood vessels result in reduced blood flow to the limbs. This condition brings with it a host of problems such as poor wound healing ability.

In mice, where blood flow is normally restored relatively rapidly, the benefits of accelerated revascularization may not be obvious. However, in larger animals and humans, where restoration of flow is much slower, this acceleration may be of profound importance and could mean the difference between saving and losing a limb. Schatteman said that her team is currently investigating the use of these blood cells to restore flow in larger animal models.

Angioblasts are precursor cells that go on to become endothelial cells, the cells that line the walls of large blood vessels and form the walls of smaller blood vessels. Although the question of whether angioblast function is impaired in people with diabetes remains open, Schatteman’s study suggests that it is. Angioblasts from people with type I diabetes form fewer endothelial cells in culture than angioblasts from people without the condition. These findings suggest that the inability of these blood cells to become blood vessel wall cells contributes to certain vascular problems associated with diabetes.

Diabetes is a paradoxical disease. While people with this condition are less able to grow new blood vessels in the limbs than control subjects, they tend to grow more blood vessels in the eyes and kidneys. Too many blood vessels can be as problematic as too few, so any increase in revascularization needs to be targeted to the limbs.

"Our approach is designed to localize the revascularization to the limbs," Schatteman said. "We hope this approach will lead to fewer problems than a systemic approach, which would affect the whole body."

Schatteman cautioned that there are still many steps remaining to determine whether angioblasts may someday be useful therapeutic agents. An important first step will be to investigate the distribution of injected cells and examine the possible consequences of their incorporation into tissues beyond the site of injection.

While the current study focused specifically on restoring blood flow to a limb with damaged circulation, it is possible that the findings may be significant with respect to rapidly restoring blood flow to infarcted regions of the heart or to the brain after a stroke.

Researchers in the Department of Molecular Medicine at the University of Texas Health Science Center in San Antonio were also involved in this study. The research was supported by an American Heart Association -Texas Affiliate Grant-In Aid and a joint National Institutes of Health and Juvenile Diabetes Foundation International Grant.


Story Source:

The above story is based on materials provided by University Of Iowa. Note: Materials may be edited for content and length.


Cite This Page:

University Of Iowa. "Study Uses Blood Cells To Restore Blood Flow To Damaged Tissue In Mice With Diabetes." ScienceDaily. ScienceDaily, 31 August 2000. <www.sciencedaily.com/releases/2000/08/000831075417.htm>.
University Of Iowa. (2000, August 31). Study Uses Blood Cells To Restore Blood Flow To Damaged Tissue In Mice With Diabetes. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2000/08/000831075417.htm
University Of Iowa. "Study Uses Blood Cells To Restore Blood Flow To Damaged Tissue In Mice With Diabetes." ScienceDaily. www.sciencedaily.com/releases/2000/08/000831075417.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins