Featured Research

from universities, journals, and other organizations

Residual Stress In Piezoelectric Ceramics Can Be Reduced, Put To Work

Date:
September 6, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
By applying a mechanical bending stress to offset the effects of residual stress in a piezoelectric ceramic thin film, researchers at the University of Illinois have found a way to significantly enhance the film's performance.

CHAMPAIGN, Ill. -- By applying a mechanical bending stress to offset the effects of residual stress in a piezoelectric ceramic thin film, researchers at the University of Illinois have found a way to significantly enhance the film's performance.

"Understanding the effects of residual stress in piezoelectric ceramic thin films is critical for their design and optimization as smart materials," said Nancy Sottos, a professor of theoretical and applied mechanics at the UI. "Not only can we greatly improve their performance as tiny sensors and actuators in microelectromechanical (MEMS) devices, we can also put the effects of residual stress to work in a unique patterning process to better incorporate these materials on electronic chips."

In previous work, Sottos and graduate research assistant Lei Lian found that as the ceramic films became thinner, the desired piezoelectric response also became smaller. Stresses within the films were thought to be primarily responsible.

Significant stresses build up in piezoelectric thin-film structures during the fabrication process, Sottos said. "There are intrinsic stresses caused by shrinkage and densification during the drying and firing stages, and there are extrinsic stresses that are induced upon cooling due to the mismatch between the thermoelastic properties of the film and substrate. As the films become thinner and thinner, the residual stress affects the piezoelectric properties more and more."

To further explore the connection between residual stress and piezoelectric response, Sottos and Lian exposed lead-zirconate-titanate thin films to varying amounts of mechanical stress. By applying a small mechanical load in the opposite direction to the tensile stress, they could relieve some of the residual stress in the film. The film's piezoelectric response was then recorded with a high-resolution, laser Doppler heterodyne interferometric measuring technique.

"The film's response increased significantly with the application of a compressive bending stress," Sottos said. "A 10-pecent reduction in the residual stress netted a 30-percent increase in displacement."

In practice, it may be possible to compensate for the residual stress and recover film response by changing stress states during processing or by applying a mechanical deformation, Sottos said. It's also possible to put the residual stress to work in patterning the films for use on integrated circuits.

"It is difficult to selectively etch a ceramic, so standard subtractive chip processing techniques won't work well for some smart materials," Sottos said. "But, methods to first pattern a substrate with a special polymeric monolayer and then lay down the ceramic film have recently been developed at Illinois. The film will adhere to the exposed substrate, but not to the monolayer. Residual stress induced in the film during drying will cause it to crack off the monolayer with extremely clean edges."

The researchers presented their latest findings at the International Congress of Theoretical and Applied Mechanics, held Aug. 27 to Sept. 2 in Chicago.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Residual Stress In Piezoelectric Ceramics Can Be Reduced, Put To Work." ScienceDaily. ScienceDaily, 6 September 2000. <www.sciencedaily.com/releases/2000/09/000904122612.htm>.
University Of Illinois At Urbana-Champaign. (2000, September 6). Residual Stress In Piezoelectric Ceramics Can Be Reduced, Put To Work. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2000/09/000904122612.htm
University Of Illinois At Urbana-Champaign. "Residual Stress In Piezoelectric Ceramics Can Be Reduced, Put To Work." ScienceDaily. www.sciencedaily.com/releases/2000/09/000904122612.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins