Featured Research

from universities, journals, and other organizations

In Another Coup For Carbon Nanotubes, Penn Scientists Find The Tiny Cylinders Of Pure Carbon May Top All Other Known Materials In Heat Conduction

Date:
September 20, 2000
Source:
University Of Pennsylvania
Summary:
New research from the University of Pennsylvania indicates that carbon nanotubes, filaments of pure carbon less than one ten-thousandth the width of a human hair, may be the best heat-conducting material man has ever known. The findings suggest that these exotic strands, already heralded for their unparalleled strength and unique ability to adopt the electrical properties of either semiconductors or perfect metals, may someday also find applications as miniature heat conduits in a host of devices and materials.

PHILADELPHIA -- New research from the University of Pennsylvania indicates that carbon nanotubes, filaments of pure carbon less than one ten-thousandth the width of a human hair, may be the best heat-conducting material man has ever known. The findings suggest that these exotic strands, already heralded for their unparalleled strength and unique ability to adopt the electrical properties of either semiconductors or perfect metals, may someday also find applications as miniature heat conduits in a host of devices and materials.

A Penn team led by materials scientist John E. Fischer, Ph.D., and physicist Alan T. Johnson, Ph.D., offers these first details on carbon nanotubes' thermal properties in a paper appearing in the Sept. 8 issue of the journal Science.

For some time, scientists have been intrigued by carbon nanotubes, pure carbon cylinders with walls just one atom thick. First created a decade ago by zapping graphite with lasers, the structures have become one of the marvels of the nanotechnology world -- 100 times as strong as steel and capable of far greater electrical conductivity than other carbon-based materials. Researchers have envisioned the miniature strands bulking up brittle plastics and conducting current in ever-smaller electrical circuits, among dozens of other possibilities.

Carbon nanotubes' newfound ability to conduct heat suggests applications far beyond those that call on their strength and electrical conductivity, said Dr. Johnson, an assistant professor of physics at Penn. As computing power has skyrocketed, the infinitesimal heat generated by each circuit on a microchip has proved a headache for computer designers and manufacturers, who have few ways to dissipate the considerable heat that results from millions of circuits operating in tandem. Next-generation computer designs might circumvent this problem with judiciously placed carbon nanotubes to direct heat away from sensitive circuitry.

Similarly, carbon nanotubes used as heat sinks in electric motors could allow for the introduction of plastic parts that might otherwise melt under the motors' intense heat. The tiny structures could also be embedded in materials regularly called upon to withstand extreme heat, such as those that form the exterior panels of airplanes and rockets.

Heat energy in nanotubes is carried by sound waves; in materials that are optimal conductors of heat, these waves move very rapidly in an essentially one-dimensional direction. Drs. Fischer and Johnson found that sound waves bearing thermal energy travel straight down individual carbon nanotubes at roughly 10,000 meters per second, behavior consistent with superior thermal conductivity. But they also unexpectedly determined that even when carbon nanotubes are bundled together -- like individual filaments welded together into the giant cables that support suspension bridges -- the bonds between the individual nanotubes remain so weak that heat essentially doesn't transcend them.

"Scientists had predicted that two-dimensional or three-dimensional arrays of carbon nanotubes would permit the sound waves carrying heat to scatter in all directions, greatly reducing thermal conductivity," said Dr. Fischer, a professor of materials science and engineering in Penn's Laboratory for Research on the Structure of Matter. "Our experiments showed that even within bundles of nanotubes, sound waves remain remarkably one-dimensional."

"The sound waves don't fan out and dissipate because the bonds between nanotubes in a bundle are so weak," Dr. Johnson said. "In terms of bonding strength, you can think of nanotubes in a bundle almost like dried spaghetti sliding freely back and forth when you shake its box."

Ironically, the same weak linkages that make carbon nanotubes superior for heat conductance could deflate scientists' earlier expectation that bun-dles of them would provide unrivaled mechanical strength. While the individual nanotubes are extremely strong, the weak bonding Drs. Fischer and Johnson observed between nanotubes would need to be overcome to translate this strength to a thicker structure.

Drs. Fischer and Johnson were joined in the research by James Hone, a former Penn postdoctoral researcher now at the California Institute of Technology; Bertram Batlogg of Lucent Technologies; and Zdenek Benes, a Penn graduate student. The work was sponsored by the National Science Foundation and the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by University Of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania. "In Another Coup For Carbon Nanotubes, Penn Scientists Find The Tiny Cylinders Of Pure Carbon May Top All Other Known Materials In Heat Conduction." ScienceDaily. ScienceDaily, 20 September 2000. <www.sciencedaily.com/releases/2000/09/000913213024.htm>.
University Of Pennsylvania. (2000, September 20). In Another Coup For Carbon Nanotubes, Penn Scientists Find The Tiny Cylinders Of Pure Carbon May Top All Other Known Materials In Heat Conduction. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2000/09/000913213024.htm
University Of Pennsylvania. "In Another Coup For Carbon Nanotubes, Penn Scientists Find The Tiny Cylinders Of Pure Carbon May Top All Other Known Materials In Heat Conduction." ScienceDaily. www.sciencedaily.com/releases/2000/09/000913213024.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins