Featured Research

from universities, journals, and other organizations

Infections May Trigger Autoimmunity Via Rare, But Normal Process

Date:
December 19, 2000
Source:
Wistar Institute
Summary:
New findings from researchers at The Wistar Institute suggest that autoimmunity may result from the rare confluence of entirely normal events. The study tracked a mildly self-reactive subset of the body's so-called memory B cells - long-lived immune cells that stand ready to respond to pathogens the immune system has previously encountered.

PHILADELPHIA - The body's immune system has sophisticated safeguards in place to prevent it from turning its destructive power against the body's own cells. Immune cells with the capability of attacking the self are readily identified in healthy individuals, and these cells are typically purged from the system. Autoimmune disorders, such as lupus, arthritis, and diabetes, are understood to result from breakdowns in those protections - they are seen as departures from the healthy norm.

New findings from researchers at The Wistar Institute, however, suggest that autoimmunity may result from the rare confluence of entirely normal events. A report on the results appears in the December 18 issue of the Journal of Experimental Medicine and is featured on the journal's cover.

The study tracked a mildly self-reactive subset of the body's so-called memory B cells - long-lived immune cells that stand ready to respond to pathogens the immune system has previously encountered. This B cell subset apparently evades detection by the immune system's screening against cells that attack self. Then, under certain circumstances, a subsequent viral infection can activate this group of cells to begin producing antibodies against self, perhaps triggering full-blown autoimmunity and disease.

"One thing this study tells us is that there doesn't appear to be any process that prevents memory B cells from generating responses to self," says Wistar associate professor Andrew J. Caton, Ph.D., senior author on the study. "It also tells us that a subsequent infection with a virus is quite capable of activating these self-reactive immune cells. It's not difficult to see how these events could lead to autoimmunity. The question then becomes how common this might be - could it explain a substantial proportion of autoimmune disease?"

Immunologists have long suspected that viral infections may be able to initiate autoimmune responses, but it has been difficult to design an experiment that would clearly and convincingly differentiate the immune system's responses to a virus from those to self.

As part of their solution this problem, the Wistar team developed a transgenic mouse that incorporates an important influenza gene into its DNA, so that the flu gene becomes self. The gene codes for a protein called hemagglutinin, responsible for much of flu's virulence. The hemagglutinin gene undergoes constant mutation that results in the appearance of several dangerous new influenza strains each year. The researchers then immunized the transgenic mice with influenza virus. The result was an autoimmune response.

"The simplest prediction was that the mouse's immune system would be blind to the virus, that it wouldn't respond to the flu infection because it recognized elements of the flu virus as self," says Caton. "But that's not what happened. The mice responded to the virus - not as vigorously as ordinary mice, perhaps, but they responded nonetheless - even though it also represented a response against self."

The reason became clear after Caton and his colleagues dissected the various stages of immune response to infection in the mice. Normally, a powerful first wave of antibodies is produced by B cells in response to a new infection, with concentrations rising rapidly in the blood over the first five to seven days. This response dominates the immune landscape initially and helps to clear the infection from the body quickly. Caton and others had previously shown that self-reactive cells are effectively eliminated from this group of cells.

The surprise, however, came when Caton's team examined a set of B cells that participate in a second wave of the immune response to infections. It has long been known that some of the B cells less vigorously involved in the first-wave infection response congregate in the spleen and in lymph nodes, joining dendritic cells and T cells to form structures known as germinal centers. (One such center is pictured on the cover of the December 18 Journal of Experimental Medicine.) Here, the B cells enter into a process called hypermutation, which creates a population of long-lived memory B cells able to even more aggressively counter future infections similar to the one just vanquished. This process underlies the effectiveness of vaccines, and the result is an improved capacity to fight off infections that come later in life.

Because the mutations that produce memory B cells are largely random, immunologists have for some time recognized that this process could potentially produce memory B cells able to react with self and assumed that a screening process of some kind must exist to eliminate the self-reactive cells. The new work from the Wistar scientists, however, shows that this is not the case. This fact would set the stage for later infections by pathogens resembling elements of self to initiate autoimmunity, and this is precisely what was seen in the transgenic mice in Caton's laboratory.

The lead author on the Journal of Experimental Medicine study is doctoral student Amy J. Reed, and Michael P. Riley, Ph.D. is a co-author. Support for the research was provided by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Wistar Institute. Note: Materials may be edited for content and length.


Cite This Page:

Wistar Institute. "Infections May Trigger Autoimmunity Via Rare, But Normal Process." ScienceDaily. ScienceDaily, 19 December 2000. <www.sciencedaily.com/releases/2000/12/001219074119.htm>.
Wistar Institute. (2000, December 19). Infections May Trigger Autoimmunity Via Rare, But Normal Process. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2000/12/001219074119.htm
Wistar Institute. "Infections May Trigger Autoimmunity Via Rare, But Normal Process." ScienceDaily. www.sciencedaily.com/releases/2000/12/001219074119.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins