Featured Research

from universities, journals, and other organizations

Single Enzyme Necessary For Normal Brain, Vertebrae, Urogenital Tract And Lower Body Development In Mammals

Date:
January 17, 2001
Source:
Cold Spring Harbor Laboratory
Summary:
Two independent research teams have discovered that a single enzyme is necessary for normal brain, vertebrae, urogenital tract and lower body embryological development in mammals. Dr. Hiroshi Hamada of Japan, Dr. Martin Petkovich of Canada, and their colleagues report in jointly published papers that the enzyme CPY26 metabolizes retinoic acid, an essential derivative of vitamin A. Retinoic acid (RA) regulates development by activating the expression of specific target genes throughout the embryo. The formation of an uneven distribution of RA along the central body axis of the developing embryo is essential for normal development.

Two independent research teams have discovered that a single enzyme is necessary for normal brain, vertebrae, urogenital tract and lower body embryological development in mammals. Dr. Hiroshi Hamada of Japan, Dr. Martin Petkovich of Canada, and their colleagues report in jointly published papers that the enzyme CPY26 metabolizes retinoic acid, an essential derivative of vitamin A. Retinoic acid (RA) regulates development by activating the expression of specific target genes throughout the embryo. The formation of an uneven distribution of RA along the central body axis of the developing embryo is essential for normal development. By discovering that CPY26 degrades RA, and thereby establishes this uneven distribution of RA, scientists have determined that CPY26 plays a pivotal role in maintaining the fidelity of the mammalian embryo.

It has been known since the 1930s that vitamin A is necessary for normal embryological development. Since animal cells cannot make RA de novo, they must obtain it from dietary sources of vitamin A. Too little or too much vitamin A intake during pregnancy results in a host of characteristic morphological defects, including cranio-facial, cardiac, lung, genito-urinary and neurological abnormalities. Thus, there are stringent guidelines governing vitamin A consumption during pregnancy. The level of RA in the embryo is maintained by a delicate balance between RA synthesis and RA degredation. The effectiveness of RA as a developmental regulator depends on the precise control of its distribution.

In order to elucidate the developmental role of CPY26, Dr. Hamada, Dr. Petkovich and colleagues removed the gene Cpy26 from a srain of mice. Cpy26 mutant mouse embryos exhibited elevated levels of RA in those areas that normally express CPY26. This data established that CPY26 acts to metabolically degrade RA in vivo. The Cpy26 mutant mouse embryos were not viable; they exhibited major defects including spina bifida, truncation of the posterior body, kidney, brain and vertebrae abnormalities. The most severe developmental defect resulting from the loss of CPY26 activity was complete hindlimb fusion, resulting in a ‘mermaid tail’. Since the CPY26 knock-out mice phenotypes closely resembled those resulting from excess RA, this suggested further that CPY26 functions normally to maintain specific areas of the developing embryo in an RA depleted state.

Dr. Hamada, Dr. Petkovich and colleagues have demonstrated that CPY26 acts to protect the developing mammalian embryo from the deleterious effects of excessive RA activity. The discovery that CPY26 functions to restrict the field of RA signaling represents a significant advance in our understanding of the role and pattern of retinoic acid activity in the developing embryo. Further work to delineate the pathway of CPY26 action will lend insight into the molecular mechanisms of RA-associated congenital defects like spina bifida, fetal vitamin A deficiency syndrome and caudal regression syndrome.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Single Enzyme Necessary For Normal Brain, Vertebrae, Urogenital Tract And Lower Body Development In Mammals." ScienceDaily. ScienceDaily, 17 January 2001. <www.sciencedaily.com/releases/2001/01/010116080119.htm>.
Cold Spring Harbor Laboratory. (2001, January 17). Single Enzyme Necessary For Normal Brain, Vertebrae, Urogenital Tract And Lower Body Development In Mammals. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2001/01/010116080119.htm
Cold Spring Harbor Laboratory. "Single Enzyme Necessary For Normal Brain, Vertebrae, Urogenital Tract And Lower Body Development In Mammals." ScienceDaily. www.sciencedaily.com/releases/2001/01/010116080119.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com
Hundreds in Virginia Turn out for a Free Clinic to Manage Health

Hundreds in Virginia Turn out for a Free Clinic to Manage Health

AFP (July 24, 2014) America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th - prompting hundreds in Virginia to turn out for a free clinic run by “Remote Area Medical”. Duration 02:40 Video provided by AFP
Powered by NewsLook.com
Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins