Featured Research

from universities, journals, and other organizations

Penn Researchers Unlock A Mystery Related To Acute Undifferentiated Leukemia

Date:
January 19, 2001
Source:
University Of Pennsylvania Medical Center
Summary:
Scientists studying gene regulation by a common protein compound have uncovered its link to a fatal form of leukemia, in a breakthrough that opens new lines of inquiry for researchers devoted to finding a cure for the disease.

(January 12, 2001) -- Scientists studying gene regulation by a common protein compound have uncovered its link to a fatal form of leukemia, in a breakthrough that opens new lines of inquiry for researchers devoted to finding a cure for the disease.

Related Articles


"This is how science works at its best. You begin with an interest in how cells work, and it leads to an understanding of the relationship of basic cellular proteins to a disease," said Debabrata Chakravarti, PhD., Assistant Professor of Pharmacology at the University of Pennsylvania School of Medicine and leader of the research team that made the discovery.

The findings are published today in the journal Cell.

Chakravarti's research, which began with his interest in a specific aspect of cell transcription – the change in a cell brought about by the action of DNA and protein -- has uncovered what he describes as "a plausible mechanism" for the function of a cancer-causing gene found in aberrant bone marrow cells.

Bone marrow contains pluripotent stem cells, which can give rise to lymphocytes and myeloid cells. Myeloid cells contribute to the work of the body's immune system -- but when they fail to differentiate, and therefore cannot perform their natural function, they trigger acute undifferentiated leukemia.

At the time of Chakravati's discovery, he and his group were working to identify the function of a group of cellular proteins, known collectively as INHAT, that regulates gene activity. The protein complex functions by modifying DNA through histones – the chain of proteins that coil around DNA.

As they moved forward in defining the aspects of INHAT that have to do with cell transcription, Penn's researchers discovered the identity of one of the proteins in the INHAT sequence is SET -- a putatiove oncogene.

"SET is present in every cell, but it functions only as an oncogene in patients suffering from acute undifferentiated leukemia. Nobody knows why this is so –but we do know that in leukemia patients it is always found fused to a second protein called CAN," Chakravarti said. The function of the SET-CAN fusion is also a mystery.

As they unraveled the INHAT protein sequence, the Penn scientists were also able to identify the function of SET. They now understand that in normal conditions, SET "masks" histones by wrapping itself around the ends of the protein chains, helping to prevent random commands from using the histones on the DNA to activate genes inappropriately – and therefore protecting the integrity of every cell's function.

Now that SET's presence in healthy cells is understood, it will be easier for scientists to decipher what the protein's presence means when it appears as part of SET-CAN in cancer cells, Chakravarti said.

"Previously, neither the function of SET nor CAN was understood. Now that we understand at least one function, we can investigate whether the SET-CAN fusion contributes to leukemia by promoting aberrant histone modification," he said. "We can also investigate the separate function of CAN. And we can investigate how these two proteins alter one another."

"Our work answered one small question. But more important, it opens up so many new avenues of research," he said. The study was funded by grants from the National Institutes of Health, the University of Pennsylvania Cancer Center and the University of Pennsylvania Diabetes Center.

Members of Chakravarti's staff who assisted in the research include Sang-beom Seo, PhD; Peter McNamara, PhD; Soyoung Heo, and April Turner. The study was conducted in collaboration with William S. Lane, PhD., of the Department of Microchemistry and the Proteomics Analysis Facility at Harvard University.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Penn Researchers Unlock A Mystery Related To Acute Undifferentiated Leukemia." ScienceDaily. ScienceDaily, 19 January 2001. <www.sciencedaily.com/releases/2001/01/010118065038.htm>.
University Of Pennsylvania Medical Center. (2001, January 19). Penn Researchers Unlock A Mystery Related To Acute Undifferentiated Leukemia. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2001/01/010118065038.htm
University Of Pennsylvania Medical Center. "Penn Researchers Unlock A Mystery Related To Acute Undifferentiated Leukemia." ScienceDaily. www.sciencedaily.com/releases/2001/01/010118065038.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins