Featured Research

from universities, journals, and other organizations

Genetic Mutation Identified That Results In Aggressive, Drug Resistant, Cancers

Date:
January 18, 2001
Source:
Memorial Sloan-Kettering Cancer Center
Summary:
What makes one patient’s cancer more aggressive than another? Why does a patient’s cancer develop resistance to a previously effective chemotherapy drug? A genetic mutation of the MAD2 protein may provide the answer to both of these questions.

New York, N.Y, January 18, 2001 -- What makes one patient’s cancer more aggressive than another? Why does a patient’s cancer develop resistance to a previously effective chemotherapy drug? A genetic mutation of the MAD2 protein may provide the answer to both of these questions.

Researchers at Memorial Sloan-Kettering Cancer Center have genetically engineered a mutation in the MAD2 gene in human cancer cells that eliminates a checkpoint essential to normal cell division. The resulting mutation made the tumor cells very genetically unstable, a characteristic long associated with more aggressive cancers. In addition, it rendered the cells resistant to taxanes. The result of the study, published in the January 18 issue of Nature, has implications for drug development and may provide a new marker for diagnosing the potential aggressiveness of tumors.

In 1996, Drs. Robert Benezra and Yong Li of Memorial Sloan-Kettering Cancer Center identified MAD2, a member of a class of proteins referred to as mitotic checkpoint proteins.

These ensure the equal distribution of chromosomes to the two daughter cells during cell division. The loss of this checkpoint results in a form of chromosome instability in which whole chromosomes can be lost or gained. Cancers that exhibit this type of chromosome instability are usually more aggressive and have a poor prognosis. Correlations between chromosome instability and the loss of the mitotic checkpoint have been identified in human colon cancer cell lines. However, there was previously no evidence providing a direct relationship between these two phenomena. Now, researchers in the Benezra laboratory have found that the loss of MAD2 in a genetically stable cancer cell line created chromosome instability.

“When we took a particularly stable human colon carcinoma cell line and genetically engineered the loss of one copy of the MAD2 gene, we were able to visualize the cell’s chromosomes falling apart prematurely during cell division by using a simple test,” said Loren Michel, MD, the study’s lead author. “Although the loss of one copy of MAD2 caused only subtle decreases in the amount of MAD2 protein levels, it had a great impact on the cell’s genetic behavior. The tumors became highly genomically unstable and continued to grow even in the presence of chemotherapy drugs in the taxane family. Our results suggest that developing a similar test to detect the changes in this genetic pathway in human cancers could be used to predict disease progression.”

Taking their findings one step further, they found that the identical genetic mutation that had such a dramatic effect on a pre-existing tumor cell could also contribute to the initiation of cancerous tumors in mice. “Mice with complete absence of MAD2 protein die during embryonic development. We introduced a mutation that inactivated just one copy of the MAD2 gene in mice and this resulted in cancer,” explained Vasco Liberal, a study author from Memorial Sloan-Kettering. “Uniquely, this mutation resulted in a high frequency of lung carcinomas despite the fact that these genes are found in every cell of the body and the disease is extremely rare in most mice. Why the lung tissue is specifically affected is unknown but it does show that disruption of this process participates in the development of cancer. Interestingly in humans, low levels of MAD2 have been observed in breast tumor cell lines.”

The researchers also found that small changes in the MAD2 protein level result in a partial loss of the mitotic checkpoint. “When the cell was missing half a dose, it became resistant to taxane drugs. This was a surprise since the yeast results suggested the exact opposite,” said Robert Benezra, PhD., senior author of the study and head of the Molecular Mechanisms of Differentiation Laboratory at Memorial Sloan-Kettering. “This could have implications as to why a cancer cell suddenly develops drug resistance and needs further investigation.”

Also participating in this study were V.V.V.S. Murty, PhD. and Anupam Chatterjee, PhD., Columbia Presbyterian College of Physicians and Surgeons; Boris Pasche, PhD., Northwestern University Medical School; Max Dobles, PhD and Peter K. Sorger, PhD., Massachusetts Institute of Technology; and Regina Kirchwegger, PhD. of Memorial Sloan–Kettering Cancer Center. The work was supported by a grant from the National Institutes of Health.

Memorial Sloan-Kettering Cancer Center is the world’s oldest and largest institution devoted to prevention, patient care, research and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide.


Story Source:

The above story is based on materials provided by Memorial Sloan-Kettering Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

Memorial Sloan-Kettering Cancer Center. "Genetic Mutation Identified That Results In Aggressive, Drug Resistant, Cancers." ScienceDaily. ScienceDaily, 18 January 2001. <www.sciencedaily.com/releases/2001/01/010118071409.htm>.
Memorial Sloan-Kettering Cancer Center. (2001, January 18). Genetic Mutation Identified That Results In Aggressive, Drug Resistant, Cancers. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2001/01/010118071409.htm
Memorial Sloan-Kettering Cancer Center. "Genetic Mutation Identified That Results In Aggressive, Drug Resistant, Cancers." ScienceDaily. www.sciencedaily.com/releases/2001/01/010118071409.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins