Featured Research

from universities, journals, and other organizations

Picky Molecular Traps Snare Problem Chemicals From Process Streams, Effluents

Date:
February 26, 2001
Source:
Sandia National Laboratories
Summary:
Researchers studying ways to capture radioactive chemicals swimming in a sea of hazardous waste have created a new class of molecular cages that, like lobster traps, let certain species in while keeping others out.

ALBUQUERQUE, N.M. — Researchers studying ways to capture radioactive chemicals swimming in a sea of hazardous waste have created a new class of molecular cages that, like lobster traps, let certain species in while keeping others out.

The new microporous materials, named Sandia Octahedral Molecular Sieves (SOMS) by their discoverers at Sandia National Laboratories, could be useful in microelectronics fabrication and other industries where purification of, or extraction from, liquid process or waste streams is a significant or costly problem.

They also could help capture for reuse a variety of valuable materials (such as chromium, cobalt, and nickel) from industrial effluents.

Sandia developed the SOMS in collaboration with researchers at the University of California – Davis (UC Davis), Pacific Northwest National Laboratory (PNNL), the University of Michigan, the State University of New York – Stony Brook (SUNY), and Lawrence Livermore National Laboratory (LLNL).

The work is sponsored by the Department of Energy’s Environmental Management Science Program, which funds projects that reduce long-term DOE-site cleanup costs.

Picky ion catchers

Chemically, a SOMS is a tiny sponge that sucks up divalent cations (atom groups with a +2 charge) into its microscopic pores and snares them at negatively charged bonding sites that have been vacated by ions with weaker charges — a process called ion exchange. (Home water softeners use ion exchangers to remove iron from tap water.)

The SOMS are picky about which ions they capture because the sizes of openings on their crystalline surfaces can be adjusted precisely by altering the recipes followed to make them. By varying these openings from 4 to 15 angstroms (an angstrom is one ten-millionth of a millimeter), the researchers are able to select the sizes of ions or molecules that can get into the pores, and which can’t.

“Not only are SOMS fascinating as a new material,” says Sandia principal investigator Tina M. Nenoff, “they possess many unique properties that are useful in waste cleanup and industrial processing.”

The new SOMS are extremely selective for strontium-90, for instance, one of the two most prevalent radioactive constituents of liquid hazardous waste inside the 177 underground storage tanks at DOE’s Hanford, Wash., environmental remediation site.

In lab tests the SOMS trapped 99.8 percent of strontium-90 ions in parts-per-million concentrations from solutions containing chemically similar and highly abundant sodium ions.

“We can tune the pore size and the chemistry of the framework on the nano scale so the SOMS materials capture cations on the bulk scale very selectively and efficiently, and in all types of environments,” says Nenoff.

An unexpected bonus property

When heated to about 500C, the SOMS collapse into a dense glass-like material called a perovskite, its shrunken pores locking the cations tightly into its crystalline structure. Bricks made from the densified SOMS are impervious to leaching and stable against high pH, radiation, and heat, which might make them ideal for disposal.

“This unique, unexpected property gives SOMS the added bonus of being ready for a waste repository or landfill after only minimal processing,” she says.

Liquid waste or processing solutions could be pumped through columns containing the SOMS, she says. When the SOMS became fully saturated with the desired cations, they could be densified and disposed of safely.

Technically SOMS are sodium niobium oxide with transition metals such as titanium or zirconium added to give the SOMS their microporosity and ion exchange properties.

Sandia already is studying ways to use SOMS to extract and reuse valuable cobalt from copper-mine electro-refinement waste streams.


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "Picky Molecular Traps Snare Problem Chemicals From Process Streams, Effluents." ScienceDaily. ScienceDaily, 26 February 2001. <www.sciencedaily.com/releases/2001/02/010226071755.htm>.
Sandia National Laboratories. (2001, February 26). Picky Molecular Traps Snare Problem Chemicals From Process Streams, Effluents. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2001/02/010226071755.htm
Sandia National Laboratories. "Picky Molecular Traps Snare Problem Chemicals From Process Streams, Effluents." ScienceDaily. www.sciencedaily.com/releases/2001/02/010226071755.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins