Featured Research

from universities, journals, and other organizations

New Technique Answers One Of Water’s Basic Mysteries

Date:
March 19, 2001
Source:
University Of Rochester
Summary:
The driving force behind one of the fundamental properties of water, its pH, has defied explanation for decades. Scientists at the University of California, Berkeley, and the University of Rochester, however, have created the first model of how water becomes acidly neutral -— a characteristic on which all life depends. The findings should help researchers understand and control other complex chemical reactions as well, ones that could be used to create medicines and better materials.

We drink it. We bathe in it. It’s part of our everyday life, but the driving force behind one of the fundamental properties of water, its pH, has defied explanation for decades. Scientists at the University of California, Berkeley, and the University of Rochester, however, have created the first model of how water becomes acidly neutral -— a characteristic on which all life depends. The findings should help researchers understand and control other complex chemical reactions as well, ones that could be used to create medicines and better materials. The research appears in the March 16 issue of Science.

Related Articles


The advent of high-speed computers and the development of new algorithms have given the team of researchers the ability to create a simulation of a kind of molecular split so rare and brief that it’s impossible to witness in real life. In 10 hours, a single watched molecule could be expected to split in about 100 femtoseconds—about a thousandth of a trillionth of a second. It would be the equivalent of waiting the entire age of the universe to see a one-second twitch.

Since the team couldn’t catch the split by chance, they developed a complex computer simulation that showed how a proton is torn away from a water molecule. The pH is a measure of the number of protons, or hydrogen nuclei, that are pulled from a water molecule and roam freely. The number of these free protons determine how water behaves when it comes in contact with other substances, playing a crucial role in nearly any biological process that includes water. Since the 1950s, scientists such as Nobel Prize winner Manfred Eigen have been trying to catch water in the act of splitting, but so far the mysterious process has avoided both observation and modeling.

"This reaction is very complex," says Christoph Dellago, assistant professor of chemistry at the University of Rochester. "It’s as if the water acts as both the ‘splitter’ and the ‘splitee’ at the same time."

The research team found that the brief reaction happens when, by pure chance, a number of molecules of water surround another in a specific formation. That formation creates a quick electrical field that pulls a proton from the central molecule. Less than a billionth of a second later, the formation breaks and the proton either falls back to the central molecule, or its path is cut off and it roams as a free proton. Though this occurrence is extremely rare for any one molecule, there are countless molecules in a single glass of water, so the process happens constantly.

To understand the way the protons are stripped away in the first place, the team used a proven algorithm to model the process, but the real hurdle lay in the rarity of the event itself. "If we just set up the algorithm and let it run, we would have waited many times the age of the universe for something to happen," says Dellago. Devising a way to "zoom in" on just the single moment when the stripping took place demanded the integration of a second complex algorithm, which in turn demanded ultra-high speed computers. "The result is that we now have the first model of why water has the pH it does," says Dellago.

Dellago hopes the new combination of techniques can be used to uncover new ways to understand and control chemical reactions.

Phillip Geissler of the University of California, is the first author of the paper.


Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University Of Rochester. "New Technique Answers One Of Water’s Basic Mysteries." ScienceDaily. ScienceDaily, 19 March 2001. <www.sciencedaily.com/releases/2001/03/010316073231.htm>.
University Of Rochester. (2001, March 19). New Technique Answers One Of Water’s Basic Mysteries. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2001/03/010316073231.htm
University Of Rochester. "New Technique Answers One Of Water’s Basic Mysteries." ScienceDaily. www.sciencedaily.com/releases/2001/03/010316073231.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins