Featured Research

from universities, journals, and other organizations

Duke Chemists Synthesize Fungus Compound That Could Lead To Oral Diabetes Drugs

Date:
April 5, 2001
Source:
Duke University
Summary:
Duke University chemists have used "combinatorial chemistry" techniques to synthesize a compound originally extracted from an African fungus that could lead to oral drugs that control diabetes.

SAN DIEGO – Duke University chemists have used "combinatorial chemistry" techniques to synthesize a compound originally extracted from an African fungus that could lead to oral drugs that control diabetes.

Related Articles


The compound, called demethylasterriquinone B1 or "DAQ" for short, "has this fascinating property of being able to activate insulin receptors in cells in basically the same way as insulin, and yet it's not a protein," said Michael Pirrung, a Duke chemistry professor who prepared his team's work for presentation Wednesday at the American Chemical Society's national meeting in San Diego.

"Instead, it's just a regular organic molecule like you take for your allergies. And because it's a regular organic molecule you can take it orally, which is such a big deal," Pirrung added in an interview at Duke. Insulin to treat diabetes requires injections. "The other big thing is that it's a naturally occurring molecule," he noted. "And one area that combinatorial chemistry has previously not really made any inroads into is naturally occurring compounds."

Combinatorial chemistry seeks to efficiently synthesize and identify chemicals with desired traits by mixing and matching large "libraries" of different molecular building blocks to eventually create the desired structure. Pirrung helped pioneer "solid phase synthesis" techniques for performing combinatorial chemistry reactions on the surfaces of small glass chips.

However, "the DAQ molecule is not particularly amenable to synthesis while its pieces are attached to a solid," he said. Fortunately, Pirrung noted, "the principles of combinatorial chemistry have now been expanded to molecules that are made in solution."

Instead of fixing molecular libraries to a surface, tiny samples of each library entry can be placed in a different small well, with different reagents then pipetted in to interact there, he said.

Merck Research Laboratories scientists originally discovered DAQ by systematically screening more than 50,000 combinations of synthetic and natural compounds for molecules that activate human insulin receptors, according to articles in the May 7, 1999 issue of the journal Science.

In a report in the Jan. 12, 2001 issue of the American Chemical Society journal Organic Letters, Pirrung, Duke post-doctoral fellow Kaapjoo Park and graduate student Zhitao Li described the start of now-completed efforts by Duke combinatorial chemists to synthesize DAQ more efficiently.

"The molecule itself is highly modular," Pirrung said. "It has an indole ring, a quinone ring, and a different indole ring. So that makes it perfect for combinatorial chemistry. If you have three variants of the first module, three of the second and three of the third, just by combining all those forms there are 27 possible compounds to make. So that enables you to make very large collections of related molecules."

Indole, a protein decomposition product occurring in some flower oils, is a ring-shaped organic molecule made of carbon, hydrogen and nitrogen atoms. Quinones are ring-shaped compounds containing double-bonded carbon and oxygen groups.

"One of the things that I think is really interesting about this project is that it's enabling us to address basic questions about the insulin receptors and how they work," said Pirrung, who also is a key member of Duke's Program in Biological Chemistry. To study insulin receptors, his lab will begin raising the fruit fly Drosophila, an insect that uses insulin receptors to regulate growth rather than blood sugar levels.

The authors of the Science report also noted that DAQ does not activate the receptor for insulin-like growth factor-1 (IGF-1), which is similar to the insulin receptor and has been tied to both prostate and breast cancer.

Pirrung noted that Nicholas Webster, a researcher at the University of California San Diego, has suggested evaluating DAQ-like compounds for use against prostate cancer.

In addition to its support from the American Diabetes Association, Pirrung's lab has now begun studying the chemistry of the IGF-1 receptor with funding from CapCURE, a foundation begun by Michael Milken to address prostate cancer. "There are many other so-called growth factors in the cell that have similar though not the same kind of receptor," he said. "And we're thinking that these molecules we've been working on might have what medicinal chemists sometimes call a ‘privileged structure.'

"There are certain kinds of structures that keep showing up over and over again in biologically active molecules, steroids being an obvious example. What we're hoping is that this initial hit has gotten us into chemicals that have privileged structures for growth factor receptors.

"So having a big selection of molecules to look at, with a large number of different growth factor receptors, could be very powerful in finding new molecules that could selectively turn the receptors off or on."


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Duke Chemists Synthesize Fungus Compound That Could Lead To Oral Diabetes Drugs." ScienceDaily. ScienceDaily, 5 April 2001. <www.sciencedaily.com/releases/2001/04/010405081814.htm>.
Duke University. (2001, April 5). Duke Chemists Synthesize Fungus Compound That Could Lead To Oral Diabetes Drugs. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2001/04/010405081814.htm
Duke University. "Duke Chemists Synthesize Fungus Compound That Could Lead To Oral Diabetes Drugs." ScienceDaily. www.sciencedaily.com/releases/2001/04/010405081814.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins