Featured Research

from universities, journals, and other organizations

Ribosome Insight Could Help Combat Antibiotic Resistance

Date:
May 8, 2001
Source:
Argonne National Laboratory
Summary:
Researchers from the United Kingdom have come to Argonne National Laboratory’s Advanced Photon Source to take a close look at one of the cell’s most important players, the protein factory called the ribosome. What they found offers new information on how proteins are formed and how they create the chain of proteins that make up an organism.

ARGONNE, Ill. (May 4, 2001) – Researchers from the United Kingdom have come to Argonne National Laboratory’s Advanced Photon Source to take a close look at one of the cell’s most important players, the protein factory called the ribosome. What they found offers new information on how proteins are formed and how they create the chain of proteins that make up an organism.

Related Articles


A detailed picture of how the ribosome allows accurate translation of the genetic code has been obtained by a team of Medical Research Council biologists, and it could play a significant role in understanding how many antibiotics work.

The ribosome is the large molecular machine in all cells that makes proteins (the building blocks of organisms) by translating the information encoded by genes.

In a paper published in Science today, the team from the Medical Research Council Laboratory of Molecular Biology provides insight into how ribosomes manufacture proteins from amino acids to the exact specification of the genes on DNA. The work has also shown previously unknown details of how antibiotics actually work and how an antibiotic could induce a ribosome to make a “mistake” and allow the wrong amino acid to be added onto the protein chain. Such incorrectly-made proteins wouldn’t function so if this happened in bacteria during development they would be rendered ineffective.

Dr. Venki Ramakrishnan, head of the Laboratory for Molecular Biology, explained: “As biologists we are fascinated by these results because of their fundamental importance in understanding how the genetic code gets translated into proteins. However, pharmaceutical and biotech companies are keenly interested because this research not only helps us to understand how many known antibiotics work but also helps us to understand the basis of certain kinds of resistance. This will hopefully allow us to design new antibiotics in the future that can overcome the growing world-wide problem of resistance.”

The ribosome binds to a molecule called messenger RNA, which is a copy of the gene on DNA. Other RNA molecules – transfer RNA (tRNA) – bind to the ribosome. At one end a short strand is complementary to the code on the messenger RNA. The other end brings in the new amino acid to be attached. The ribosome‘s role is to ensure that the “correct” tRNA (i.e. as specified by the code from the messenger RNA) is accepted and the wrong ones are rejected. Once the tRNA is accepted, the ribosome catalyzes the formation of a peptide bond between the growing protein chain and the new amino acid, lengthening it by one. The process stops when the end of the gene is reached.

The ribosome consists of two halves - a small or “30S” subunit which binds messenger RNA and a large or “50S” subunit that catalyses the peptide bond. Bacteria and human ribosomes are different and as a result, a large number of antibiotics have evolved naturally that bind to and block bacterial ribosomes more effectively than they do human ribosomes.

Dr Ramakrishnan continued: “Although these antibiotics were discovered several decades ago, we haven’t understood in detail how they work.”

Recently, several groups of researchers have been developing high resolution three-dimensional structure of both subunits of the ribosome by using macromolecular X-ray crystallography. A group at Yale University solved the structure of the 50S subunit. Two groups have worked on the 30S subunit, one at the Max Planck Institute in Germany and the Weizmann Institute in Israel, headed by Ada Yonath and a second at the Medical Research Council Laboratory of Molecular Biology headed by Dr Ramakrishnan.

The U.K. group has previously solved the atomic structure of the 30S subunit and its complex with several different antibiotics. These results were published in Nature in September last year and in Cell in December. The paper being published today describes how the group has solved the structure of the 30S subunit with a piece of mRNA and tRNA, both in the presence and absence of a different antibiotic, paromomycin. The work shows how the ribosome recognises that the tRNA bound is “correct” and matches the code specified by the messenger RNA, which is in turn a copy of the gene, and how antibiotics could allow the ribosome to accept incorrect tRNAs and allow the wrong amino acid to be added on to the protein chain.

Argonne’s Advanced Photon Source produces the nation’s most brilliant X-rays for research. The facility, which opened in 1996, is funded by the U.S. Department of Energy’s Office of Basic Energy Sciences. The research reported today was funded by the Medical Research Council in the U.K. and the U.S. National Institutes of Health.

The British researchers are the most recent of a long series of groups of scientists who are using the facilities of the Structural Biology Center at the Advanced Photon Source to develop crystal structures of various portions of the ribosome. The Structural Biology Center provides the latest in instruments and other equipment for X-ray crystallography, a specialized research method for determining the molecular structure of materials.

The Medical Research Council is the U.K. government’s leading agency which supports research into all areas of medical science, through its own research facilities and by providing grants to individual scientists and support for postgraduate students.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America's scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago as part of the U.S. Department of Energy's national laboratory system.


Story Source:

The above story is based on materials provided by Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Argonne National Laboratory. "Ribosome Insight Could Help Combat Antibiotic Resistance." ScienceDaily. ScienceDaily, 8 May 2001. <www.sciencedaily.com/releases/2001/05/010508082659.htm>.
Argonne National Laboratory. (2001, May 8). Ribosome Insight Could Help Combat Antibiotic Resistance. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2001/05/010508082659.htm
Argonne National Laboratory. "Ribosome Insight Could Help Combat Antibiotic Resistance." ScienceDaily. www.sciencedaily.com/releases/2001/05/010508082659.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins