Featured Research

from universities, journals, and other organizations

Physicists Join Fight Against Cancer, By Understanding How Best To Use Radiation To Kill Tumor Cells

Date:
June 28, 2001
Source:
Texas A&M University
Summary:
Physicists at Texas A&M University have joined the battle to fight cancer by studying collisions between particles. Professor John F. Reading and three graduate students are trying to understand how to make the best use of radiation to kill tumor cells.

COLLEGE STATION, June 11 - Physicists at Texas A&M University have joined the battle to fight cancer by studying collisions between particles. Professor John F. Reading and three graduate students are trying to understand how to make the best use of radiation to kill tumor cells. In current radiation treatments, only a portion of tumor cells die, while others are free to multiply and spread. By looking at the inner mechanisms of how radiation attacks tumor cells, the Texas A&M physicists think it might be possible to make radiation more effective.

Related Articles


Radiation is thought to kill tumor cells by damaging their DNA. In the form of a double helix with two strands, DNA is the part of the cell that carries the genetic code. Radiation may break either one or both of the DNA strands. If only one strand is broken, the cell can often repair the damage. If both strands are broken, the repair is more difficult and the cell is more likely to die.

Reading and graduate students Jun Fu, Mathew Fitzpatrick and Bill Smith, have been working for seven years on the mechanisms that occur when a particular type of radiation, made of a beam of ions, hits the living target cells.

"Once you understand the processes," says Reading, "you can act in a more informed manner, devise a more effective radiation, and therefore hopefully reduce the peripheral damage to healthy cells caused by radiation."

Working in collaboration with a group of physicists led by Annie Chetioui, professor of physics at the University of Pierre and Marie Curie of Paris in France, the Texas A&M physicists are developing computer programs to describe in detail the effects of beams of ions on tumors.

A focus of Chetioui's work is to explain the existence of an optimal ion speed associated with the highest killing rates. "As you slow the speed of the incoming ions, they have much more time to interact with the atoms on the DNA strand, so the killing rate increases" says Reading. "But past a critical point, even though the energy deposited still increases, the killing stops."

Chetioui theorizes that a special atomic reaction called an Auger process is the key to understanding this. As a projectile hits one DNA strand, it may cause an explosion of energetic electrons that scythe through the second DNA strand at an adjacent site causing the double break.

Further experiments conducted in France have led to some support for this mechanism but many free electrons with a wide range of speeds are always produced by the impact, not just the Auger electrons. All of these electrons eventually deposit their energy in the target and may also damage the cell. To show that fast Auger electrons are responsible for cell death, scientists need to accurately determine the distribution of electron speeds.

The Texas A&M group is now trying to provide these details. Graduate students Smith and Fitzpatrick have written Ph.D. theses that predict the onset of the Auger process. Fu's master's thesis builds on this work to determine the electron speeds. If the projectile is a fast proton and the target atom is hydrogen, the speeds can be measured. These experimental results are in good agreement with Fu's work. He will now go on to study DNA carbon and oxygen atoms.

"We successfully calculated the simplest case: the proton-hydrogen reaction with one ejected electron," Fu says. "We are now extending the calculation to many-electron cases, and we would need to consider reactions between a proton and carbon and oxygen atoms as well."

Although work is still ongoing, the Texas A&M physicists are well on their way to developing a tool that can help sort out precisely what happens when living cells are impacted by ion beams.

"If Chetioui is right, then by choosing the right beam energy, you could greatly enhance the effectiveness of radiotherapy," says Reading. "You could deliver much smaller doses directly to the cancer, cutting down on peripheral damage to healthy cells."


Story Source:

The above story is based on materials provided by Texas A&M University. Note: Materials may be edited for content and length.


Cite This Page:

Texas A&M University. "Physicists Join Fight Against Cancer, By Understanding How Best To Use Radiation To Kill Tumor Cells." ScienceDaily. ScienceDaily, 28 June 2001. <www.sciencedaily.com/releases/2001/06/010612070032.htm>.
Texas A&M University. (2001, June 28). Physicists Join Fight Against Cancer, By Understanding How Best To Use Radiation To Kill Tumor Cells. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2001/06/010612070032.htm
Texas A&M University. "Physicists Join Fight Against Cancer, By Understanding How Best To Use Radiation To Kill Tumor Cells." ScienceDaily. www.sciencedaily.com/releases/2001/06/010612070032.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins