Featured Research

from universities, journals, and other organizations

Experiments Indicate Normal Visual Experience Necessary For Proper Brain Development

Date:
July 10, 2001
Source:
Duke University
Summary:
Duke University Medical Center researchers have developed evidence in animal experiments indicating that – while the brain's structures are prewired to enable development of the visual system – normal visual experience is required for complete maturation. Without such visual experience, the scientists' experiments indicated, the visual system fails to establish proper connections and is incapable of normal function.

DURHAM, N.C. -- Duke University Medical Center researchers have developed evidence in animal experiments indicating that – while the brain's structures are prewired to enable development of the visual system – normal visual experience is required for complete maturation. Without such visual experience, the scientists' experiments indicated, the visual system fails to establish proper connections and is incapable of normal function.

Although the researchers caution that their findings are limited to one facet of the animals' visual system, they said they believe that a broad range of neural functions, such as motor control and the other senses might also depend on early normal experience. Such a possibility could emphasize the importance of treating a wide range of early childhood disabilities to encourage normal early experience, the scientists say.

The results of the experiments were published in the June 28 Nature by Leonard White of the medical center's division of physical therapy, David Coppola, now at Centenary College in Shreveport, La., and David Fitzpatrick of the department of neurobiology. Their work was sponsored by the National Eye Institute and was conducted in Fitzpatrick's lab in the Department of Neurobiology.

In their experiments, the researchers tested the effects of visual experience on newborn ferrets, which were chosen because they are born with their eyes shut and their visual wiring comparable to other mammals that are still in the fetal stage. Unlike other studies that have emphasized the long-term consequences of altering visual experience, White, Coppola and Fitzpatrick sought to explore the effects of experience during a brief-but-important window of brain development when the eyes open and sensory experience ensues.

The researchers' experiments aimed to explore how visual experience affected maturation of neural pathways in the animals' visual cortex that recognize lines of different orientation. The scientists studied orientation-specific structures because the activity of the brain cells that respond to such stimuli is easily and precisely measured. Furthermore, orientation selectivity must be computed by neurons in the visual cortex based on electrical signals derived from the retina -- just the sort of neural computation that might be influenced by sensory experience, the scientists said.

In the experiments, one group of such animals was reared in complete darkness, while another group was reared with their eyes kept shut. Thus, the first group had no visual experience, while the second had only undifferentiated visual stimulation of light filtering through their eyelids, but no specific experience with oriented lines.

After allowing the animals to see, the scientists imaged the visual cortices of normal animals and both groups of test animals as they were presented with images of horizontal, vertical or angled lines. They used a video imaging technique that detects minute changes in the absorption of light, which can be used to monitor the level of activity in columns of neurons in the visual cortex. These optical signals were used to assess whether orientation-selective neurons were functioning normally.

Tests of the dark-reared animals revealed appropriate activity in the brain's orientation-selective regions, but a lower degree of orientation selectivity than those of normally reared animals, the scientists said.

Most dramatic, however, were the differences between normal animals and those reared with their eyes closed. Those animals' orientation-selective regions were completely disrupted, White, Coppola and Fitzpatrick found.

"When we presented the animals with this abnormal visual experience, the visual system was doing its best to generate circuits consistent with that input, and the result was lack of orientation selectivity," said Fitzpatrick. He emphasized that the animals' orientation-related circuitry otherwise responded normally to light, lacking only orientation selectively.

Said White, "Our findings suggest that the developing visual cortex just before the eyes open is primed to receive the visual input consistent with the natural environment. So, there is a certain synergy between the intrinsic mechanisms of development and the impact of experience normally provided by the visual environment. The findings in the animals with closed eyes show that this synergy can be completely disrupted by exposure to highly abnormal visual experience." According to Fitzpatrick, the findings may offer a more balanced view of the contribution of innate wiring and experience to visual maturation.

"Historically, the thinking in this area has swung like a pendulum," Fitzpatrick said. "At one point, many people believed that experience was the key to setting up orientation, and without experience there wouldn't be much orientation selectivity. Then the pendulum swung in the other direction, with great emphasis placed on the capacity of brain to wire itself and little role for experience in the maturation of orientation selectivity. That was the situation when we began these experiments.

"So, I believe that our work serves to paint a more accurate and complete picture of the contribution of these two sources. There is an innate program capable of setting up orientation selectivity, but by itself, this program cannot achieve adult levels of orientation tuning. For that, normal visual experience is essential. The effects of abnormal experience, as in light filtered through closed lids, tell us just how powerful experience can be in altering the course of brain development. With abnormal experience, neurons in the visual cortex are far worse than if no experience of any kind had been permitted. This means that the brain is endowed genetically with certain functional abilities that can be significantly enhanced or seriously degraded depending on the quality of experience encountered in early life."

According to the scientists, further experiments are needed to understand such issues as whether there is a critical period for the maturation of orientation selectivity in development during which the animals are most sensitive to experience. Also, the scientists plan to explore whether the animals can recover normal function when given some normal experience after an initial period of abnormal experience. Importantly, said White, the scientists will also seek to understand the cellular mechanism of such visual learning.

"We present evidence in this paper that a particular type of neural connection -- the long-range horizontal connection that spans the cerebral cortex -- is disrupted in the absence of normal experience," said White. "We would like to understand the relationship between a given activity pattern in the brain and the functioning neural architecture that it produces." Such detailed studies would involve exploring the molecular mechanisms that operate at the level of the connections among neurons, said White. The scientists' findings may be relevant for understanding human visual disorders, he said.

"These results suggest that visual disabilities affecting both eyes in infants -- for example, cataracts or bandages over the eyes -- that alter patterns of neural activity in the visual centers of the brain might have an impact on the ongoing development of the visual cortex," White said. Also, he said, the results suggest a broader lesson in the importance of early experience on brain development.

"My colleagues and I who work in physical therapy are particularly interested in the implication from this work in vision that some general physical disability early in life might impact brain development," he said. "For example, one might imagine such an impact of an early musculoskeletal disability on sensory feedback patterns and neural motor control in children just learning to walk."


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Experiments Indicate Normal Visual Experience Necessary For Proper Brain Development." ScienceDaily. ScienceDaily, 10 July 2001. <www.sciencedaily.com/releases/2001/07/010710074403.htm>.
Duke University. (2001, July 10). Experiments Indicate Normal Visual Experience Necessary For Proper Brain Development. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2001/07/010710074403.htm
Duke University. "Experiments Indicate Normal Visual Experience Necessary For Proper Brain Development." ScienceDaily. www.sciencedaily.com/releases/2001/07/010710074403.htm (accessed September 23, 2014).

Share This



More Mind & Brain News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Food Addiction Might Be Caused By PTSD

Food Addiction Might Be Caused By PTSD

Newsy (Sep. 18, 2014) New research shows that women who suffer from PTSD are three times more likely to develop a food addiction. Video provided by Newsy
Powered by NewsLook.com
Corporal Punishment on Decline, Debate Renews

Corporal Punishment on Decline, Debate Renews

AP (Sep. 16, 2014) Corporal punishment in the United States is on the decline, but there is renewed debate over its use after Minnesota Vikings running back Adrian Peterson was charged with child abuse. (Sept. 16) Video provided by AP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins