Featured Research

from universities, journals, and other organizations

Brain Tumors And Mouse Models: New Insight Into The Development Of Gliomas

Date:
August 3, 2001
Source:
Cold Spring Harbor Laboratory
Summary:
In the latest issue of Genes & Development, a team led by Dr. Eric Holland at the Memorial Sloan-Kettering Cancer Centre in New York reports on the development of new mouse models of brain tumors.

In the latest issue of Genes & Development, a team led by Dr. Eric Holland at the Memorial Sloan-Kettering Cancer Centre in New York reports on the development of new mouse models of brain tumors.

Gliomas are the most common form of primary brain tumors, with approximately 30,000 people in the USA newly diagnosed each year. Murine models offer a route to understand how different types and severities of gliomas arise, and an experimental system in which to test potential therapies.

Gliomas are brain tumors that have the characteristics of glial cells. Glial cells are specialised cells whose normal job is to maintain the function and interactions of neurons. Gliomas can show characteristics of either or both types of glial cells, astrocytes and oligodendrocytes. Gliomas are graded according to their severity: Grade 1 are the least serious, while Grade 4 malignant gliomas are the most serious – these patients have an average survival time of 1 year from the date of diagnosis.

Previous research has shown that genetic mutations in two different cell signaling pathways can contribute to the formation of gliomas. The first group of mutations disrupt the differentiation process by which an undifferentiated ‘progenitor’ cell develops into a specific type of glial cell. Such cell signaling pathways are affected by molecules called growth factors, such as platelet derived growth factor (PDGF). The second set of mutations disrupts the cell cycle arrest pathway, which regulates glial cell proliferation.

Based on these findings, Dr. Holland and colleagues used genetic tools to express PDGF in different brain cells to investigate what underlies the different characteristics of gliomas. Two mouse models were generated. One strain of mice expressed excess growth factor in undifferentiated cells, while the second second strain of mice expressed PDGF in differentiated astrocytes. Both strains of mice developed mostly low grade gliomas.

Dr. Holland and colleagues discovered that the timing of PDGF expression can determine which characteristics a particular glioma displays. Dr. Holland found that excess PDGF expression in mature astrocytes may generate gliomas by ‘dedifferentiating’ the astrocytes into glial progenitor-like cells. Further experiments showed that the severity of the gliomas in both strains of mice could be increased by the loss of an important cell cycle arrest gene. Dr. Holland and colleagues conclude that some low grade gliomas are made up of proliferating glial progenitor cells that are somehow blocked in their ability to differentiate. Meanwhile, high grade malignant gliomas are likely to have acquired additional mutations in genes important in regulating the cell cycle.

Identifying pathways that lead to gliomas is a key step towards the design of new therapeutic strategies for the treatment of these tumors. The fact that the low grade gliomas in these mice consisted of undifferentiated glial progenitor-like cells suggests that these types of tumor may respond well to drugs that promote glial cell differentiation. These mice provide an excellent model for testing such drugs and offer hope for a new generation of glioma therapies.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Brain Tumors And Mouse Models: New Insight Into The Development Of Gliomas." ScienceDaily. ScienceDaily, 3 August 2001. <www.sciencedaily.com/releases/2001/08/010801081825.htm>.
Cold Spring Harbor Laboratory. (2001, August 3). Brain Tumors And Mouse Models: New Insight Into The Development Of Gliomas. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2001/08/010801081825.htm
Cold Spring Harbor Laboratory. "Brain Tumors And Mouse Models: New Insight Into The Development Of Gliomas." ScienceDaily. www.sciencedaily.com/releases/2001/08/010801081825.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins