Featured Research

from universities, journals, and other organizations

Brookhaven Physicists Produce "Doubly Strange Nuclei"; First Large-Scale Production Of Nuclei Containing Two Strange Quarks

Date:
August 21, 2001
Source:
Brookhaven National Laboratory
Summary:
Strange science has taken a great leap forward at the U.S. Department of Energy's Brookhaven National Laboratory. There, physicists have produced a significant number of "doubly strange nuclei," or nuclei containing two strange quarks. Studies of these nuclei will help scientists explore the forces between nuclear particles, particularly within so-called strange matter, and may contribute to a better understanding of neutron stars, the superdense remains of burnt-out stars, which are thought to contain large quantities of strange quarks.

UPTON, NY -- Strange science has taken a great leap forward at the U.S. Department of Energy's Brookhaven National Laboratory. There, physicists have produced a significant number of "doubly strange nuclei," or nuclei containing two strange quarks. Studies of these nuclei will help scientists explore the forces between nuclear particles, particularly within so-called strange matter, and may contribute to a better understanding of neutron stars, the superdense remains of burnt-out stars, which are thought to contain large quantities of strange quarks.

The 50 physicists collaborating on the experiment, who represent 15 institutions in six countries, describe their findings in an upcoming isssue of Physical Review Letters.

"This is the first experiment to produce large numbers of these doubly strange nuclei," said Brookhaven physicist Adam Rusek, a co-spokesperson for the collaboration. Four previous experiments conducted over the past 40 years in the U.S., Europe, and Japan have produced one such nucleus each, with varying degrees of certainty. In the current publication, which is based on data taken in 1998, the Brookhaven collaboration describes 30 to 40 events out of several hundred produced. "That's enough events to begin a study using statistical techniques," Rusek said.

To create the nuclei, the scientists aim the world's most intense proton beam -- produced at one of Brookhaven's particle accelerators, the Alternating Gradient Synchrotron -- at a tungsten target. From the particles produced in those collisions, the scientists separate out an extremely intense beam of negatively charged kaons, which are each composed of one "strange" quark and one "up" antiquark. When these negative kaons then strike a beryllium target and interact with its protons, some of the energy is converted into new strange quarks and strange antiquarks.

These quarks then regroup to form a variety of particles, some of which continue to interact. Occasionally, a structure containing a proton, a neutron, and two lambda particles (each composed of one up, one down, and one strange quark) is formed. This double-lambda structure, with its two strange quarks, is the observed doubly strange nucleus.

Detecting the formation of this strange species is no easy task. It's more like finding a subatomic needle in a particle-soup haystack. For one thing, many other species are produced in the collisions. Plus, the scientists can't "see" the double lambda structure directly. Instead, they look for pions, a subatomic product the lambdas emit as they decay in less than one billionth of a second. Furthermore, in order to infer that the pions came from a nucleus containing two lambdas, there must be two pion decay signals at very specific energies.

Sophisticated computers and careful analyses helped narrow the search from 100 million potentially interesting events, to 100,000 where two strange quarks were produced, to the 30 to 40 where those two strange quarks existed for a fleeting instant inside the same nucleus. "The most important part is eliminating all the other possible explanations for these events," said Sidney Kahana, a theoretical physicist at Brookhaven. "We're left with this double lambda species as the only explanation," he said.

Now that they believe they have a reliable method for producing the double lambda species, the scientists would like to produce more so they can get better measurements of the binding energy, or force of interaction, between the two lambda particles. "We can use this nucleus as a laboratory in which the two lambdas can be held together long enough to study," Kahana said.

Based on the current data, the interaction between lambdas appears to be rather weak -- possibly too weak for the two particles to merge to produce a postulated, six-quark structure called an H particle. But further experiments are necessary, the scientists say.

The interaction between lambdas may also offer insight into the properties of neutron stars, which are thought to contain vast numbers of strange particles, including lambdas. Neutron stars are the only place in the universe scientists believe such strange matter exists in a stable form.

With the ability to produce appreciable numbers of doubly strange nuclei, "Brookhaven is now the best place in the world to study strange matter," said Morgan May, who leads the strangeness nuclear physics program at Brookhaven.

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

The U.S. Department of Energy's Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

For information about fundamental particles and interactions, go to: http://particleadventure.org/, and specifically: http://particleadventure.org/frameless/chart.html


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Brookhaven Physicists Produce "Doubly Strange Nuclei"; First Large-Scale Production Of Nuclei Containing Two Strange Quarks." ScienceDaily. ScienceDaily, 21 August 2001. <www.sciencedaily.com/releases/2001/08/010821075526.htm>.
Brookhaven National Laboratory. (2001, August 21). Brookhaven Physicists Produce "Doubly Strange Nuclei"; First Large-Scale Production Of Nuclei Containing Two Strange Quarks. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2001/08/010821075526.htm
Brookhaven National Laboratory. "Brookhaven Physicists Produce "Doubly Strange Nuclei"; First Large-Scale Production Of Nuclei Containing Two Strange Quarks." ScienceDaily. www.sciencedaily.com/releases/2001/08/010821075526.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins