Featured Research

from universities, journals, and other organizations

Neurons Implanted In Stroke-Damaged Brain Tissue Show Function, Say University Of Pittsburgh Researchers

Date:
August 22, 2001
Source:
University Of Pittsburgh Medical Center
Summary:
An imaging study of neurons implanted in damaged areas of the brains of stroke patients in the hopes of restoring function has shown the first signs of cellular growth, say University of Pittsburgh researchers.

PITTSBURGH, Aug. 21 - An imaging study of neurons implanted in damaged areas of the brains of stroke patients in the hopes of restoring function has shown the first signs of cellular growth, say University of Pittsburgh researchers.

Related Articles


Positron Emission Tomography (PET) scans taken six months after surgery to implant LBS-neurons showed a greater than 10 percent increase in metabolic activity in the damaged parts of some patients' brains compared to scans taken just a week prior to surgery. The increased metabolism corresponds with better performance on standardized stroke tests for behavioral and motor function.

While PET scans taken at 12 months post-surgery showed that metabolism in the implanted area itself had lessened to baseline, the surrounding area in some patients showed maintained or even improved function - perhaps evidence that the LBS-neurons were becoming integrated into the brain.

Results of the study from the first human neuroimplantation trial for chronic stroke appear in the September issue of Neurosurgery.

"These changes in glucose metabolism in the stroke and surrounding brain tissue may represent cellular activity or grafting of the implanted neurons," said Carolyn Cidis Meltzer, M.D., associate professor of radiology and psychiatry and medical director of the University of Pittsburgh Medical Center's PET facility and principal author of the study. "Although this is not direct evidence of synapse formation, it does suggest that the new neurons are being wired into the brain."

Dr. Meltzer and her colleagues performed PET imaging on 11 patients who suffered strokes resulting in persistent motor deficits at least a week before, then six months after implantation surgery. Nine of the original group went through the scans again at 12 months. Metabolism was measured by the uptake of a glucose analog called fluorodeoxyglucose (FDG) by the cells.

After six months, increases of FDG greater than 10 percent were observed in seven of 11 patients. After 12 months, the increase was sustained by three of the 11. In the areas surrounding the stroke, only two of 11 patients showed a greater than 10 percent increase in metabolism at six months, but after a year, five of 11 patients had at least one scan demonstrating a rise in relative metabolism over baseline.

The increased metabolism correlated with positive changes in neurological evaluations (National Institutes of Health stroke scale, European stroke scale) given to the patients during a 52-week period following transplant.

Patients are all part of the first human trial of the effectiveness of neuroimplantation to repair damage caused by stroke. Principal investigators in the trial are Douglas Kondziolka, M.D., professor of neurological surgery and radiation oncology and Lawrence Wechsler, M.D., professor of neurology and neurosurgery, both of the University of Pittsburgh School of Medicine.

LBS-neurons originated from a human teratocarcinoma, a tumor of the reproductive organs that is composed of embryonic-like cells, which was removed from a 22-year-old cancer patient in the early 1980s. Layton BioScience Inc. has licensed a patented process that uses several chemicals to transform this cell line into fully differentiated non-dividing human neuronal cells that can be used in clinical applications. In extensive pre-clinical testing, implants of LBS-neurons reversed cognitive and motor deficits in animals in which stroke had been induced.

The implantation procedure begins with the placement of a stereotactic frame on the head of the patient. The frame is a standard tool in neurosurgery to provide a fixed way to find specific locations within the brain. The patient then receives a computed tomography (CT) or magnetic resonance imaging (MRI) scan of the brain and the surgical team makes its final decision for location of cell implantation.

Concurrently, the University of Pittsburgh Immunologic Monitoring and Diagnostic Laboratory team thaws the human neuronal cells that were frozen by and transported from Layton BioScience Inc.

After the cells are transferred to a long-needled syringe, the surgeon uses CT to guide their injection at multiple sites. The surgeon injects these cells through a small opening in the skull and patients leave the hospital the next day.

Stroke affects approximately 750,000 people in the United States each year and is the third leading cause of death and most common cause of disability.

There are no known effective treatments for chronic stroke with fixed neurological deficit.

Co-authors are Douglas Kondziolka, M.D.; Victor L. Villemagne, M.D.; Lawrence Wechsler, M.D.; Steven Goldstein, M.D.; Keith R. Thulborn, M.D., Ph.D.; James Gebel, M.D.; Elaine M. Elder, Sc.D.; Sharon DeCesare, M.D.; all of University of Pittsburgh and Alan Jacobs, M.D., of Layton BioScience Inc.

The study was funded by Layton BioScience Inc.


Story Source:

The above story is based on materials provided by University Of Pittsburgh Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pittsburgh Medical Center. "Neurons Implanted In Stroke-Damaged Brain Tissue Show Function, Say University Of Pittsburgh Researchers." ScienceDaily. ScienceDaily, 22 August 2001. <www.sciencedaily.com/releases/2001/08/010822081257.htm>.
University Of Pittsburgh Medical Center. (2001, August 22). Neurons Implanted In Stroke-Damaged Brain Tissue Show Function, Say University Of Pittsburgh Researchers. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2001/08/010822081257.htm
University Of Pittsburgh Medical Center. "Neurons Implanted In Stroke-Damaged Brain Tissue Show Function, Say University Of Pittsburgh Researchers." ScienceDaily. www.sciencedaily.com/releases/2001/08/010822081257.htm (accessed October 23, 2014).

Share This



More Mind & Brain News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins