Featured Research

from universities, journals, and other organizations

Well Preserved Meteorite Yields Clues To Carbon Evolution In Space

Date:
August 27, 2001
Source:
Arizona State University
Summary:
The first results are in from the organic analysis of the Tagish Lake Meteorite, a rare, carbon-rich meteorite classified as a “carbonaceous chondrite” that fell on a frozen Canadian lake in January 2000 and is the most pristine specimen ever studied of this group of important space objects.

The first results are in from the organic analysis of the Tagish Lake Meteorite, a rare, carbon-rich meteorite classified as a “carbonaceous chondrite” that fell on a frozen Canadian lake in January 2000 and is the most pristine specimen ever studied of this group of important space objects.

Related Articles


Carbonaceous chondrite meteorites contain vital clues to the evolution of carbon compounds in our solar system preceding the origin of life.

The analysis, conducted by a team headed by chemist Sandra Pizzarello, a research scientist at Arizona State University, on 4.5 grams taken from the sealed interior of the meteorite, found organic compounds in the meteorite with some similarities to other known carbonaceous chondrites, but also clear differences -- most notably the near-absence of the amino acids found in some meteorites studied before.

In an article scheduled to appear in the August 24 issue of the online journal Science Express (with publication in Science to follow) the team notes that the chemistry of the Tagish Lake Meteorite appears to preserve organics that accumulated or developed in the early history of the Solar System – including molecular bubbles of carbon (fullerenes or “buckyballs”) containing the noble gasses helium and argon in a ratio similar to the gas and dust cloud that formed the planets -- and thus perhaps reflects an early stage in a process of evolution of complex carbon compounds in space.

“The chemistry here is different from that we have seen in any other meteorite,” said Pizzarello. “It’s simple, when compared with Murchison (a famous carbon meteorite found in Australia in 1969 that contained numerous amino acids and a variety of other organic compounds) and probably represents a separate line of chemical evolution. However, it still includes compounds that are identical to biomolecules.”

Other members of the research team include Yongsong Huang from the Department of Geological Sciences at Brown University; Luann Becker from the Institute for Crustal Studies at the University of California Santa Barbara; Robert J. Poreda from the Department of Earth and Environmental Sciences, University of Rochester; George Cooper from the NASA Ames Research Center; and Ronald A. Nieman and Michael Williams, both also from ASU.

The Science paper notes that many of the organic compounds found in the Tagish Lake sample have also been found in other meteorites, but that the distribution of compounds is different, particularly for the amino acids and carboxylic acids.

“Some people have been disappointed that we found virtually no amino acids, but scientifically this is very exciting,” Pizzarello said. “This meteorite shows the complexity of the history of organic compounds in space -- it seems to have had a distinct evolution.

“We found some compounds identical to some in Murchison that show the same ‘interstellar connection’ in their abundance of deuterium (heavy hydrogen), while some others differ from Murchison in amounts and variety,” said Pizzarello, meaning that for some groups of organic molecules, only the simplest species were found in Tagish Lake, as opposed to a broader distribution of species found in Murchison. “Overall, Tagish Lake represents a simpler, more unaltered stage than we have seen before.”

What emerges from the analyses is evidence for what Pizzarello calls “a different outcome” of organic chemical evolution in space likely to have happened during the formation and development of the solar system, “but one that still might have contributed molecular precursors of biomolecules to the origins of life,” she noted.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "Well Preserved Meteorite Yields Clues To Carbon Evolution In Space." ScienceDaily. ScienceDaily, 27 August 2001. <www.sciencedaily.com/releases/2001/08/010824081046.htm>.
Arizona State University. (2001, August 27). Well Preserved Meteorite Yields Clues To Carbon Evolution In Space. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2001/08/010824081046.htm
Arizona State University. "Well Preserved Meteorite Yields Clues To Carbon Evolution In Space." ScienceDaily. www.sciencedaily.com/releases/2001/08/010824081046.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Space & Time News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins