Featured Research

from universities, journals, and other organizations

Slick Research Says Fluids Slip On Solids, Depending On Speed

Date:
August 31, 2001
Source:
University Of Illinois At Urbana-Champaign
Summary:
When it comes to predicting boundary conditions of fluids flowing over solid surfaces, the textbooks are all wet, say researchers at the University of Illinois. How fluids behave on extremely smooth surfaces is important in such high-tech applications as moving materials through microfluidic devices and lubricating computer hard drives.

CHAMPAIGN, Ill. — When it comes to predicting boundary conditions of fluids flowing over solid surfaces, the textbooks are all wet, say researchers at the University of Illinois.

Related Articles


How fluids behave on extremely smooth surfaces is important in such high-tech applications as moving materials through microfluidic devices and lubricating computer hard drives.

“We found that if surfaces are smooth enough, and if the liquid is moving fast enough, the liquid will slip over the surface like ice skates gliding over ice,” said Steve Granick, a professor of materials science at the UI and a researcher at the Frederick Seitz Materials Research Laboratory on campus.

Liquids may be attracted poorly to a solid surface – like beads of water on a freshly waxed car – or they may be attracted strongly – like cooking oil on an old iron skillet. A basic tenet of textbook fluid dynamics – called the “no-slip” boundary condition – says that a layer of fluid molecules flowing across a solid surface will be stuck in place, regardless of the strength of attraction.

“When standing in a shower, for example, the no-slip boundary condition says that the water molecules closest to your skin will actually stick to you and come to rest,” Granick said. “Molecules one layer away will move a little, those a little farther away will move a little faster, and so on, until the water is running freely off your body. This also explains why large dust particles can be blown off dirty eyeglasses, but smaller bits must be wiped off – a thin layer of air next to the lens doesn’t move.”

To explore the no-slip boundary condition, Granick and doctoral student Yingxi (Elaine) Zhu placed drops of liquid between molecularly smooth mica surfaces within a modified surface forces apparatus. Surface spacing was measured using optical interferometry and dynamic forces were measured using piezoelectric methods. The team’s findings were reported in the Aug. 27 issue of Physical Review Letters.

By first coating the mica with a smooth monolayer of octadecyltriethoxysiloxane, the researchers studied the behavior of two dissimilar fluids – tetradecane (an oil) and water. Each drop was squeezed until the fluid was only a few layers thick. Not only did none of the layers in either fluid “stick” to the surface (as textbooks claim they should), the amount of slip depended on the velocity of the fluid.

The researchers also saw the same effect when, instead of first modifying the solid surface, they added soap-like molecules to the flowing liquid. “The surfactant migrated to the surface where it formed a smooth coating that lessened the attraction of the liquid for that surface,” Granick said. “This means we can achieve the same lubrication goal without going through the complicated protocols of producing a perfect surface.”

This could be an easy and inexpensive way to save energy when transporting fluids through pipelines, and for reducing friction in engines and machinery, Granick said. “There will be many other applications down the road, when we know more about manipulating the no-slip boundary condition.”

The National Science Foundation and the U.S. Department of Energy supported the research.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Slick Research Says Fluids Slip On Solids, Depending On Speed." ScienceDaily. ScienceDaily, 31 August 2001. <www.sciencedaily.com/releases/2001/08/010831080908.htm>.
University Of Illinois At Urbana-Champaign. (2001, August 31). Slick Research Says Fluids Slip On Solids, Depending On Speed. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2001/08/010831080908.htm
University Of Illinois At Urbana-Champaign. "Slick Research Says Fluids Slip On Solids, Depending On Speed." ScienceDaily. www.sciencedaily.com/releases/2001/08/010831080908.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins