Featured Research

from universities, journals, and other organizations

First High-Resolution Structure Of A Membrane Transporter Solved At The Scripps Research Institute—a Weapon Against Cancer And Antibiotic-Resistant Bacteria

Date:
September 11, 2001
Source:
Scripps Research Institute
Summary:
A scientist at the Scripps Research Institute (TSRI) has published an x-ray crystal structure on the cover of the current issue of the journal Science that provides the first detailed glimpse of a membrane transporter protein, a finding that could be useful for improving cancer therapy and fighting antibiotic-resistant bacteria.

La Jolla, CA, September 7, 2001 -- A scientist at the Scripps Research Institute (TSRI) has published an x-ray crystal structure on the cover of the current issue of the journal Science that provides the first detailed glimpse of a membrane transporter protein, a finding that could be useful for improving cancer therapy and fighting antibiotic-resistant bacteria.

Antibiotic-resistant bacteria are a major problem in public health in the United States and worldwide. The World Health Organization estimates up to 60 percent of all hospital-acquired infections worldwide are caused by antibiotic-resistant bacteria and that the total cost of treating them is approximately $10 billion a year.

One of the ways that bacteria resist antibiotic drugs is by using membrane transporters—large proteins that sit in the cell membrane and move other molecules in and out. In human cells, one of the important roles these transporters play is removing harmful toxins.

Unfortunately, harmful bacteria use transporters to nullify antibiotics. And certain cancer cells do the same thing, expressing membrane transporters on their surfaces that undermine the potency of chemotherapy drugs.

"We actually have very good drugs to fight cancer and to kill bacteria," says Assistant Professor Geoffrey Chang, Ph.D., of the Department of Molecular Biology. "[But] they can't always get in the cells to work."

According to Peter E. Wright, Ph.D., Chairman, Department of Molecular Biology at TSRI, "Chang's structure for the protein MsbA from the bacterium E. coli is a breakthrough, opening the door for scientists to design a new class of drugs that patients would take in conjunction with antibiotic or chemotherapeutic agents to keep those drugs in the cells and increase their efficacy."

MsbA transports lipid A, a component of bacterial cell walls, from the inner to the outer membrane of bacteria and is necessary for bacterial cell growth. It belongs to the ATP Binding Cassette (ABC) transporter molecule family. ABC transporters are ubiquitous on the cell surfaces of almost all organisms.

"This is one of the largest superfamilies of transporter molecules," says Chang. "They transfer drugs, sugars, peptides, and all sorts of things in all organisms from bacteria to [humans]."

"This [work] could shed light on antibiotics, but because of the similarities to human pumps, it could be relevant for human chemotherapy as well," he says.

The structure of MsbA is a dimer with two identical subunits. These subunits stretch across the cell membrane, coming together at the top (outside of the cell) and opening up like two outstretched arms on the inside of the cell. When the arms encounter lipid A, they close around the polar molecule, flip it over, and send it through the top to the other side of the membrane.

Membrane protein structures have been notoriously difficult to solve because they do not form good crystals, an important first step in solving a structure. But by working with many different protein preparations and testing thousands of different buffer conditions, Chang was able surmount this problem.

The research article, "Structure of MsbA from Escherichia coli: A Homolog of the Multidrug Resistant ATP Binding Cassette (ABC) Transporters" is authored by Geoffrey Chang and Christopher B. Roth and appears in the September 7, 2001 issue of the journal Science.

The research was funded in part by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "First High-Resolution Structure Of A Membrane Transporter Solved At The Scripps Research Institute—a Weapon Against Cancer And Antibiotic-Resistant Bacteria." ScienceDaily. ScienceDaily, 11 September 2001. <www.sciencedaily.com/releases/2001/09/010907081355.htm>.
Scripps Research Institute. (2001, September 11). First High-Resolution Structure Of A Membrane Transporter Solved At The Scripps Research Institute—a Weapon Against Cancer And Antibiotic-Resistant Bacteria. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2001/09/010907081355.htm
Scripps Research Institute. "First High-Resolution Structure Of A Membrane Transporter Solved At The Scripps Research Institute—a Weapon Against Cancer And Antibiotic-Resistant Bacteria." ScienceDaily. www.sciencedaily.com/releases/2001/09/010907081355.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins