Featured Research

from universities, journals, and other organizations

UMass Team Develops New Way To Fabricate Future Generations Of Integrated Circuits

Date:
September 14, 2001
Source:
University Of Massachusetts At Amherst
Summary:
A research team led by University of Massachusetts chemical engineer James Watkins has developed a new method of depositing copper films within tiny channels etched in silicon wafers. The technique, reported in the Sept. 14 issue of the journal Science, is significant because it offers an efficient way to create the ever-smaller circuitry demanded by the microelectronics industry.

AMHERST, Mass. – A research team led by University of Massachusetts chemical engineer James Watkins has developed a new method of depositing copper films within tiny channels etched in silicon wafers. The technique, reported in the Sept. 14 issue of the journal Science, is significant because it offers an efficient way to create the ever-smaller circuitry demanded by the microelectronics industry. “This process really makes possible the fabrication of extremely small features that are necessary for future generations of integrated circuits,” Watkins said.

The team included graduate student Jason Blackburn and postdoctoral research fellows Albertina Cabanas and David Long. The work was funded by the National Science Foundation, the David and Lucile Packard Foundation, and Novellus Systems.

"The microelectronic devices that our society relies on are becoming increasingly complex, and at the same time, are decreasing in size," said Watkins. Historically the processor speed of integrated circuits has doubled every 18 months and this requires making individual components smaller and smaller. Current fabrication techniques are projected to reach their limit within the next few years and the current technology roadmap used by the industry offers no solution to the problem after 2005. "When we build devices for microelectronics there are problems in placing the metal exactly where it is needed. We just can’t do that in the very small features that will soon be required using current techniques in a way that would be practical for industry."

The conventional fabrication methods deposit metals and other materials onto silicon from either a gas or from liquid solution. Both approaches have their own advantages and disadvantages. Watkins and his group took a different view. "We reasoned that individually each of the methods is probably limited in a fundamental way, but if you could combine the most desirable attributes of the methods into a single process, then you could solve the problem. This is possible by depositing the materials from a supercritical fluid." A supercritical fluid is a substance that has some of the properties of a liquid and some of the properties of a gas. Watkins explains, "If you heat and compress a gas like carbon dioxide, it can be used to dissolve a wide range of compounds. The solution, however, does not behave like a liquid but rather like a gas and therefore flows easily over complex surfaces and into narrow gaps." This combination of properties makes Watkins’s process, called "chemical fluid deposition," ideal for the fabrication of tiny devices with complicated features.

The use of carbon dioxide has other benefits. It is non-flammable, non-toxic, and renewable and thus offers environmental advantages to current metal deposition techniques. The generation of contaminated waste water is a major concern for the metal plating industry. Using the new process, it is eliminated entirely.

The work described in the current issue of Science is directed toward the deposition of copper for interconnect structures in integrated circuits. However, Watkins see broader implications. "We are currently developing the technique for other applications including photonic materials and gas separation devices." Photonic materials play a key role in optical communications and data transfer.

Chemical fluid deposition is covered by U.S. patent 5,789,027 authored by Watkins and polymer science and engineering Professor Thomas McCarthy and assigned to the University and numerous other patent applications in process.


Story Source:

The above story is based on materials provided by University Of Massachusetts At Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University Of Massachusetts At Amherst. "UMass Team Develops New Way To Fabricate Future Generations Of Integrated Circuits." ScienceDaily. ScienceDaily, 14 September 2001. <www.sciencedaily.com/releases/2001/09/010914074223.htm>.
University Of Massachusetts At Amherst. (2001, September 14). UMass Team Develops New Way To Fabricate Future Generations Of Integrated Circuits. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2001/09/010914074223.htm
University Of Massachusetts At Amherst. "UMass Team Develops New Way To Fabricate Future Generations Of Integrated Circuits." ScienceDaily. www.sciencedaily.com/releases/2001/09/010914074223.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins