Featured Research

from universities, journals, and other organizations

UCSD Bioengineers Fabricate Joint Cartilage Which Mimics Structure And Function Of Natural Tissue

Date:
October 8, 2001
Source:
University Of California - San Diego
Summary:
University of California, San Diego (UCSD) bioengineers have fabricated cartilage tissue which for the first time mimics the multi-layered structure and cellular functions of natural articular cartilage.

University of California, San Diego (UCSD) bioengineers have fabricated cartilage tissue which for the first time mimics the multi-layered structure and cellular functions of natural articular cartilage.

The tissue is made entirely from biological materials using a modification of a technique invented at Rush-Presbyterian-St. Luke’s Medical Center, Chicago. The researchers hope this tissue could be developed as an implant treatment for the millions of people who suffer from cartilage damage associated with joint injuries, congenital defects, arthritis and age-related degeneration.

Robert Sah, professor of bioengineering at the UCSD Jacobs School of Engineering, led the study, conducted by graduate students Travis Klein and Kelvin Li and staff researcher Barb Schumacher at UCSD, in collaboration with Professors Koichi Masuda and Eugene Thonar of Rush. Klein will describe the results at the Biomedical Engineering Society annual meeting at 2:15 p.m. on Saturday, October 6 at the Sheraton Imperial in Durham, North Carolina.

“We’ve designed a tissue made up of different types of juvenile cartilage cells with the notion that the tissue could be implanted into a patient and grow up to conform to the specific geometry of the individual’s joint,” said Sah. Next steps in the research will be to conduct animal trials to determine the efficacy of such an implant treatment.

Cartilage is the body’s shock absorber, a cushion of durable tissue that protects the knee from a lifetime of walking, bending and running. Though just a few millimeters thick, cartilage is nevertheless quite complex, consisting of a surface, middle and deep region, each with its own distinct composition and structure.

In previous research, Sah detailed the mechanical properties of cartilage and found that it is soft at the surface, but 25 times stiffer in the deep regions. Meanwhile, Barbara Schumacher, then at Rush, found that the cells in the surface region make a key protein, called Superficial Zone Protein, which is a major lubricant of joints.

Using this data, bioengineers at UCSD developed a map for how to organize different types of chondrocytes to mimic the stratified nature of cartilage tissue. They then grew this cell mix together using the ARC (Alginate Recovered Chondrocyte) method developed at Rush, which suspends cells in a gel until the cells begin to form their own matrix or scaffolding. The gel is then removed, leaving an entirely biological tissue.

In laboratory tests, the researchers found that the cells at the surface of their engineered tissue effectively secreted the key molecule, Superficial Zone Protein, needed to lubricate the joint. In addition, the cells at the surface were making tissue that was softer and had a less dense matrix, while the cells in the deeper regions were spaced further apart and had a more densely packed matrix, which made the tissue stiffer.

The researchers believe that the engineered tissue will mature like cartilage does naturally in humans. During fetal development, cartilage cells are densely packed, and the matrix is loosely knit. But as a child grows and the matrix supporting the cartilage gets stronger, cartilage cells spread out. By the time an individual reaches adulthood, the cartilage is mature, the cells become less active, and the tissue is about four fold stiffer than during early development.

The engineered tissue is like immature cartilage, and the researchers believe this will give the implant an advantage because as it continues to mature, it is likely to integrate well and conform to fit with the patient’s surrounding cartilage and joint tissue.

The research is funded by the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), The Rush Arthritis and Orthopedics Institute and the Grainger Foundation.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "UCSD Bioengineers Fabricate Joint Cartilage Which Mimics Structure And Function Of Natural Tissue." ScienceDaily. ScienceDaily, 8 October 2001. <www.sciencedaily.com/releases/2001/10/011008070024.htm>.
University Of California - San Diego. (2001, October 8). UCSD Bioengineers Fabricate Joint Cartilage Which Mimics Structure And Function Of Natural Tissue. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2001/10/011008070024.htm
University Of California - San Diego. "UCSD Bioengineers Fabricate Joint Cartilage Which Mimics Structure And Function Of Natural Tissue." ScienceDaily. www.sciencedaily.com/releases/2001/10/011008070024.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins