Featured Research

from universities, journals, and other organizations

Researchers Use Tiny Bubbles To Determine Formation Temperatures For 300 Million Year Old Rocks

Date:
November 5, 2001
Source:
Virginia Tech
Summary:
The central Appalachian basin in West Virginia and western Maryland has been exploited for oil, natural gas, and coal over many years. Now, a Virginia Tech doctoral student is searching for tiny pockets of fluid that will provide information about ancient times and how sandstones associated with these natural resources formed in this basin.

(Blacksburg, Va., Nov. 5, 2001) -- The central Appalachian basin in West Virginia and western Maryland has been exploited for oil, natural gas, and coal over many years. Now, a Virginia Tech doctoral student is searching for tiny pockets of fluid that will provide information about ancient times and how sandstones associated with these natural resources formed in this basin.

If Jason Reed, a geological sciences student from of Parkersburg, W.Va., can define the thermal history of Carboniferous (300-million-year-old) quartz sandstones from the Appalachian plateau, then he will be the first to have done so using fluid inclusions.

The research will be presented during the 113th annual meeting Geological Society of American meeting in Boston Nov. 1-10, 2001.

Reed's study focuses on quartz cement. He is using a technique called "fluid inclusion micro thermometry" to determine the formation temperature for quartz cement. This cement, which holds the sandstone together, formed under heat and pressure. However, it is not entirely solid. Tiny, rare pockets in the cement contain fluids trapped millions of years ago. "These fluid inclusions are being used to determine the temperature at which the quartz cement formed – temperatures greater than 140 degrees centigrade (284 *F)," says Reed.

Fluid inclusions record a snapshot of the sandstone’s history, analogous to a dragonfly in amber from a prehistoric time. The cement-bounded fluid may have begun as drops of ancient ocean or river water, or be leftover from an underground reservoir that formed as the sandstone was buried. As the rocks continued to sink, compress, and heat up, the fluid evolved. The sources of the fluids remain a major scientific problem, says Reed, but he has been able to estimate the salinity and chemical compositions of the fluids using fluid inclusion techniques.

"If I know the temperature, I can use microscopic techniques to help constrain when in the past 300 million years the cements formed," he says. "The timing is important. A number of things can happen to sediment as it turns to rock. I want to know how quartz fits into the history of the formation of the rock. It's scientifically interesting because we gain an understanding of how certain Carboniferous sandstones formed, and because I'm looking at these sandstones in a way that hasn't been done before."

The predominantly quartz sandstones being studied occur within the central Appalachian basin. Reed is studying samples from depths ranging from 170 to 400 meters (more than 1,000 feet) although they have been buried much deeper in the past (more than three miles). "The thermal history of the rocks also allows us to determine the maturity of organic material at maximum burial," he says for the sake of those who are wondering about sources of petroleum. "The deeper the material is, the higher the temperature. Because oil and natural gas can only be formed at certain temperatures, if you can determine the temperature, you can say something about oil and gas formation."

An understanding of quartz cement formation provided by fluid inclusions will also tell him about rock porosity. "With low porosity, there is no room for oil and natural gas, or for water reservoirs, for that matter."

Reed's poster at the GSA meeting explains the fluid inclusion micro thermometry process and his early findings. The poster, "Fluid inclusions in quartz overgrowths: Implications for paleothermometry and quartz authigenesis, Pennsylvanian sandstones, central Appalachian basin" (Dis 25519), will be on display in Hynes Convention Center Hall D from 1:30 to 5:30 p.m., Monday, Nov. 5, 2001. Authors are Reed and Virginia Tech geological sciences professors Kenneth Eriksson and Robert Bodnar.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Researchers Use Tiny Bubbles To Determine Formation Temperatures For 300 Million Year Old Rocks." ScienceDaily. ScienceDaily, 5 November 2001. <www.sciencedaily.com/releases/2001/11/011105072913.htm>.
Virginia Tech. (2001, November 5). Researchers Use Tiny Bubbles To Determine Formation Temperatures For 300 Million Year Old Rocks. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2001/11/011105072913.htm
Virginia Tech. "Researchers Use Tiny Bubbles To Determine Formation Temperatures For 300 Million Year Old Rocks." ScienceDaily. www.sciencedaily.com/releases/2001/11/011105072913.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins