Featured Research

from universities, journals, and other organizations

Israeli Scientists Block The Progression Of Type I Diabetes

Date:
November 27, 2001
Source:
Weizmann Institute
Summary:
A team of researchers led by Prof. Irun Cohen of the Weizmann Institute of Science has developed a unique approach for halting the progression of Type I (juvenile or insulin-dependent) diabetes. Cohen and Dr. Dana Elias (then a postdoctoral fellow at the Institute) discovered that injecting mice with a small peptide fragment known as p277 prevents the progression of Type I diabetes.

Rehovot, Israel (November 26, 2001) -- A team of researchers led by Prof. Irun Cohen of the Weizmann Institute of Science has developed a unique approach for halting the progression of Type I (juvenile or insulin-dependent) diabetes. Cohen and Dr. Dana Elias (then a postdoctoral fellow at the Institute) discovered that injecting mice with a small peptide fragment known as p277 prevents the progression of Type I diabetes. Based on the results of his research, Peptor, a biopharmaceutical company from Rehovot, Israel, developed DiaPep277, an experimental drug designed to prevent or treat Type I diabetes.

A recent clinical study performed by researchers at Hadassah-Hebrew University Medical School and Peptor Ltd. proved that DiaPep277 is successful in arresting the progression of Type I diabetes in newly diagnosed patients. The research findings are published in the November 24, issue of The Lancet.

The study was of 35 patients newly diagnosed with Type I diabetes. Eighteen patients received injections of DiaPep277 at the beginning of the study, at one month, and at six months; 17 patients received three injections of an inert substance (placebo). Patients in the treatment group (those receiving DiaPep277) showed a halt or delay in the attack upon, or destruction of their pancreatic insulin-producing cells by the immune system. These results were evident in the level of the body’s own insulin production and in a decreased need for insulin injections. The researchers were able to trace the mechanism of this improvement to changes in the patients’ immune lymphocytes called T-cells. In contrast, patients receiving the placebo showed a significant decline in their natural insulin production and a persistent rise in the need for insulin injections. No significant side effects as a result of injecting DiaPep277 were found.

Diabetes is a chronic disease associated with elevated blood sugar levels, in which the body does not produce or properly use insulin - a hormone needed to convert sugar, starches and other foods into energy. Recent data show that between 120 and 140 million people suffer from diabetes worldwide.

Type I (insulin-dependent) diabetes usually results from an autoimmune disorder in which the immune system mistakenly attacks the body’s own insulin-producing pancreatic cells, reducing and ultimately eliminating all insulin production. In contrast, Type II diabetes is a metabolic disorder resulting from the body’s inability to properly use insulin. All Type I diabetes patients (and the more severe Type II cases) must supplement their natural insulin production with insulin injections.

For the past several years, researchers at the Weizmann Institute’s Department of Immunology led by Professor Cohen have been studying the mechanism by which the immune system destroys the insulin-producing pancreatic cells. Working with mice, the scientists discovered that a particular protein called HSP60 was closely linked to this destructive process. The protein acts like an antigen, prompting the immune cells to attack. Further investigation revealed that injecting sick mice with p277 - a small peptide fragment of the HSP60 protein - shut down the immune response, preventing the progression of Type I diabetes. “The peptide essentially acts to “reeducate” the immune cells, switching off their destructive activity,” Cohen explains. “The idea for using p277 stemmed from the discovery that the immune system has different options to choose from in responding to an antigen. It can act to destroy the antigen or alternatively protect it from destruction. In this case it indirectly prevents the pancreatic cells from being destroyed.”

The scientists participating in this study are: Professor Itamar Raz and Dr. Muriel Metzger from Hadassah-Hebrew University Medical School, Dr. Dana Elias (now VP R&D at Peptor Ltd.), Dr. Ann Avron, and Dr. Merana Tamir from Peptor Ltd.

Donor support: The Robert Koch Minerva Center for Research in Autoimmune Disease, the Yeshaya Horowitz Association and Mr. and Mrs. Samuel Theodore Cohen of Chicago, Il. Prof. Cohen is the incumbent of the Helen and Morris Mauerberger Professorial Chair in Immunology.

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and to enhance the quality of human life. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Story Source:

The above story is based on materials provided by Weizmann Institute. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute. "Israeli Scientists Block The Progression Of Type I Diabetes." ScienceDaily. ScienceDaily, 27 November 2001. <www.sciencedaily.com/releases/2001/11/011127005102.htm>.
Weizmann Institute. (2001, November 27). Israeli Scientists Block The Progression Of Type I Diabetes. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2001/11/011127005102.htm
Weizmann Institute. "Israeli Scientists Block The Progression Of Type I Diabetes." ScienceDaily. www.sciencedaily.com/releases/2001/11/011127005102.htm (accessed September 15, 2014).

Share This



More Health & Medicine News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Contagious Respiratory Illness Continues to Spread Across U.S.

Contagious Respiratory Illness Continues to Spread Across U.S.

Reuters - US Online Video (Sep. 12, 2014) Hundreds of children in several states have been stricken by a serious respiratory illness that is spreading across the U.S. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins